Problem B. Double Rainbow

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 mebibytes

Let P be a set of n points on the x-axis and each of the points is colored with one of the colors $1,2, \ldots, k$. For each color i of the k colors, there is at least one point in P which is colored with i. For a set P^{\prime} of consecutive points from P, if both P^{\prime} and $P \backslash P^{\prime}$ contain at least one point of each color, then we say that P^{\prime} makes a double rainbow. See the below figure as an example. The set P consists of ten points and each of the points is colored by one of the colors $1,2,3$, and 4 . The set P^{\prime} of the five consecutive points contained in the rectangle makes a double rainbow.

Given a set P of points and the number k of colors as input, write a program that computes and prints out the minimum size of P^{\prime} that makes a double rainbow.

Input

Your program is to read from standard input. The input starts with a line containing two integers n and $k(1 \leq k \leq n \leq 10000)$, where n is the number of the points in P and k is the number of the colors. Each of the following n lines consists of an integer from 1 to k, inclusively, and the i-th line corresponds to the color of the i-th point of P from the left.

Output

Your program is to write to standard output. Print exactly one line. The line should contain the minimum size of P^{\prime} that makes a double rainbow. If there is no such P^{\prime}, print 0 instead.

Examples

	standard input	standard output
104	5	
1		
2		
1		
1		
4		
2		
4		
3	3	
1		
2		
3		

