2020 ICPC Asia Tehran Regional Contest

Problem I : Black Family Tree

A Time-Turner is a magical device used to travel back in time, spend some time there, and then get back to the current time.

Rose Granger has found a Time-Turner in the libraries of Hogwarts and took it upon herself to go back in time and take out some members of the Black family, in order to save the lives of muggles (humans without any magical ability).

The Black family has n members, numbered 1 to n in order of being born. Member 1 is the first member of the Black family with a recorded history. For each $i(2 \leqslant i \leqslant n)$, member i is a direct descendant of member p_{i} $\left(1 \leqslant p_{i}<i\right)$. i.e., member p_{i} and all of his/her ancestors are an ancestor of member i. It is also written in the books that the i-th member of the Black family is responsible for the death of c_{i} muggles.

Now Rose has q options. The j-th option is to use the Time-Turner to go back in time and take out all the members from a_{j} to $b_{j}\left(a_{j} \leqslant b_{j}\right)$ and then come back to the current time. As a consequence of this action, any member of the Black family who has an ancestor among members a_{j} to b_{j} will never be born. For any member i who is among members a_{j} to b_{j} (i.e. $a_{j} \leqslant i \leqslant b_{j}$), or has an ancestor among members a_{j} to b_{j}, Rose will save c_{i} lives.

For each option, help Rose to find out how many lives she will save if she takes that option.

Input

The first line of the input contains two integers n and $q\left(2 \leqslant n \leqslant 10^{5}, 1 \leqslant q \leqslant 10^{5}\right)$. The second line contains n space-separated integers c_{1} to $c_{n}\left(0 \leqslant c_{i} \leqslant 10^{4}\right)$. The third line contains $n-1$ integers p_{2} to $p_{n}\left(1 \leqslant p_{i}<i\right)$. Each of the next q lines contains one option; The j-th line contains two integers a_{j} and $b_{j}\left(1 \leqslant a_{j} \leqslant b_{j} \leqslant n\right)$.

Output

For each $j(1 \leqslant j \leqslant q)$, output the number of lives Rose will save if she takes the j-th option.

Example

Standard Input						
6	5				63	Standard Output
1	2	4	8	16	32	14
1	2	2	1	5		56
1	1				62	
2	3				32	
4	5					
2	6					
6	6					

