Romanian Master of Informatics 6th Edition, Bucharest, 10th - 13th of October 2018

W

An array of numbers is said to be \mathbf{W}-shaped if it meets the following conditions:

1. It consists of four segments in decreasing order, increasing order, decreasing order, increasing order.
2. The ordering is not strict, so increasing and decreasing segments may include consecutive equal elements.
3. Every two consecutive segments have a common endpoint.
4. Every segment contains at least two distinct values.

For example, the array (3 121114) is W -shaped, since it consists of the segments (3 1), (1, 2), (2 1 1), (1 4). The array (3 1222 4) is not W -shaped. It could be broken into the segments (31), (1 2), (2 2 2), (2 4), however the segment (2 22) does not contain two distinct values.

Given an array of N integers, how many distinct permutations of the array are W -shaped? Two permutations of the array, $\left(p_{1} p_{2} \ldots p_{N}\right)$ and ($q_{1} q_{2} \ldots q_{N}$), are considered distinct if there exists a position $1 \leq i \leq N$ where $p_{i} \neq q_{i}$. In the example above, (3 122114) should only be counted once, because permuting the three 1 's does not create distinct permutations.

Input data

The first line contains N. The second line contains the N values of the array, separated by spaces.

Output data

\neq
Print a single number: the number of distinct W-shaped permutations, modulo 1,000,000,007.

Limits and constraints

- $5 \leq N \leq 300,000$
- Array values are integers between 1 and $1,000,000$ inclusive.
- Time limit: 0.6
- Memory limit: 512 MB

Romanian Master of Informatics 6th Edition, Bucharest, 10th - 13th of October 2018

Subtasks

Test cases will be scored individually.

Subtask	Percentage of \neq points	Additional input constraints
1	20\%	There are only two distinct values among the N elements.
2	30\%	All the N elements have distinct values.
3	50\%	none

Example

Input	Output	Explanation
$\begin{aligned} & 5 \\ & 31423 \end{aligned}$	6	The six distinct W-shaped permutations are:
$\begin{aligned} & 7 \\ & 1222344 \end{aligned}$	72	

