

W

An array of numbers is said to be **W-shaped** if it meets the following conditions:

- 1. It consists of four segments in decreasing order, increasing order, decreasing order, increasing order.
- 2. The ordering is not strict, so increasing and decreasing segments may include consecutive equal elements.
- 3. Every two consecutive segments have a common endpoint.
- 4. Every segment contains at least two distinct values.

For example, the array (3 1 2 1 1 4) is W-shaped, since it consists of the segments (3 1), (1, 2), (2 1 1), (1 4). The array (3 1 2 2 2 4) is **not** W-shaped. It could be broken into the segments (3 1), (1 2), (2 2 2), (2 4), however the segment (2 2 2) does not contain two distinct values.

Given an array of *N* integers, how many distinct permutations of the array are W-shaped? Two permutations of the array, $(p_1 \ p_2 \ ... \ p_N)$ and $(q_1 \ q_2 \ ... \ q_N)$, are considered distinct if there exists a position $1 \le i \le N$ where $p_i \ne q_i$. In the example above, (3 1 2 1 1 4) should only be counted once, because permuting the three 1's does not create distinct permutations.

Input data

The first line contains *N*. The second line contains the *N* values of the array, separated by spaces.

Output data

≠

Print a single number: the number of distinct W-shaped permutations, modulo 1,000,000,007.

Limits and constraints

- $5 \le N \le 300,000$
- Array values are integers between 1 and 1,000,000 inclusive.
- Time limit: 0.6
- Memory limit: 512 MB

Subtasks

Test cases will be **scored individually**.

Subtask	Percentage of ≠points	Additional input constraints
1	20%	There are only two distinct values among the <i>N</i> elements.
2	30%	All the <i>N</i> elements have distinct values.
3	50%	none

Example

Input	Output	Explanation
5	6	The six distinct W-shaped permutations are:
31423		
		3 1 3 2 4
		3 1 4 2 3
		3 2 3 1 4
		32413
		4 1 3 2 3
		42313
7	72	
1 2 2 2 3 4 4		