H: Figurines

Bob has a lot of mini figurines. He likes to display some of them on a shelf above his computer screen and he likes to regularly change which figurines appear. This ever-changing decoration is really enjoyable. Bob takes care of never adding the same mini figurine more than once. Bob has only N mini figurines and after N days he arrives at the point where each of the N figurines have been added and then removed from the shelf (which is thus empty).

Bob has a very good memory. He is able to remember which mini figurines were displayed on each of the past days. So Bob wants to run a little mental exercise to test its memory and computation ability. For this purpose, Bob numbers his figurines with the numbers $0, \ldots, N-1$ and selects a sequence of N integers $d_{0} \ldots d_{N-1}$ all in the range $[0 ; N]$. Then, Bob computes a sequence x_{0}, \ldots, x_{N} in the following way: $x_{0}=0$ and $x_{i+1}=\left(x_{i}+y_{i}\right) \bmod N$ where \bmod is the modulo operation and y_{i} is the number of figurines displayed on day d_{i} that have a number higher or equal to x_{i}. The result of Bob's computation is x_{N}.

More formally, if we note $S(i)$ the subset of $\{0, \ldots, N-1\}$ corresponding to figurines displayed on the shelf on day i, we have:

- $S(0)$ is the empty set;
- $S(i)$ is obtained from $S(i-1)$ by inserting and removing some elements.

Each element $0 \leqslant j<N$ is inserted and removed exactly once and thus, the last set $S(N)$ is also the empty set. The computation that Bob performs corresponds to the following program:

```
\(x_{0} \leftarrow 0\)
for \(i \in[0 ; N-1]\)
    \(x_{i+1} \leftarrow\left(x_{i}+\#\left\{y \in S\left(d_{i}\right)\right.\right.\) such that \(\left.\left.y \geqslant x_{i}\right\}\right) \bmod N\)
output \(x_{N}\)
```

Bob asks you to verify his computation. For that he gives you the numbers he used during its computation (the d_{0}, \ldots, d_{N-1}) as well as the log of which figurines he added or removed every day. Note that a mini figurine added on day i and removed on day j is present on a day k when $i \leqslant k<j$. You should tell him the number that you found at the end of the computation.

Input

The input is composed of $2 N+1$ lines.

- The first line contains the integer N.
- Lines 2 to $N+1$ describe the figurines added and removed. Line $i+1$ contains space-separated $+j$ or $-j$, with $0 \leqslant j<N$, to indicate that j is added or removed on day i. This line may be empty. A line may contain both $+j$ and $-j$, in that order.
- Lines $N+2$ to $2 N+1$ describe the sequence d_{0}, \ldots, d_{N-1}. Line $N+2+i$ contains the integer d_{i} with $0 \leqslant d_{i} \leqslant N$.

Output

The output should contain a single line with a single integer which is x_{N}.

Limits

- $1 \leqslant N \leqslant 100000$

Sample Input

```
3
+0 +2
-0 +1
-1 
1
2
2
```


Sample Output

2

Sample Explanation

The output is 2 since

- first, $x \leftarrow 2$ since $S(1)=\{0,2\}$ and $\#\{y \in S(1)$ such that $y \geqslant 0\}=2$;
- then, $x \leftarrow 0$ since $S(2)=\{1,2\}$ and $\#\{y \in S(2)$ such that $y \geqslant 2\}=1$;
- and finally, $x \leftarrow 2$ since $S(2)=\{1,2\}$ and $\#\{y \in S(2)$ such that $y \geqslant 0\}=2$.

