# **H: Figurines**

Time limit: 3 seconds



Bob has a lot of mini figurines. He likes to display some of them on a shelf above his computer screen and he likes to regularly change which figurines appear. This ever-changing decoration is really enjoyable. Bob takes care of never adding the same mini figurine more than once. Bob has only N mini figurines and after N days he arrives at the point where each of the N figurines have been added and then removed from the shelf (which is thus empty).

Bob has a very good memory. He is able to remember which mini figurines were displayed on each of the past days. So Bob wants to run a little mental exercise to test its memory and computation ability. For this purpose, Bob numbers his figurines with the numbers 0, ..., N - 1 and selects a sequence of N integers  $d_0 ... d_{N-1}$  all in the range [0; N]. Then, Bob computes a sequence  $x_0, ..., x_N$  in the following way:  $x_0 = 0$  and  $x_{i+1} = (x_i + y_i) \mod N$  where mod is the modulo operation and  $y_i$  is the number of figurines displayed on day  $d_i$  that have a number higher or equal to  $x_i$ . The result of Bob's computation is  $x_N$ .

More formally, if we note S(i) the subset of  $\{0, ..., N-1\}$  corresponding to figurines displayed on the shelf on day *i*, we have:

• *S*(0) is the empty set;

• S(i) is obtained from S(i-1) by inserting and removing some elements.

Each element  $0 \le j < N$  is inserted and removed exactly once and thus, the last set S(N) is also the empty set. The computation that Bob performs corresponds to the following program:

 $x_0 \leftarrow 0$ for  $i \in [0; N-1]$  $x_{i+1} \leftarrow (x_i + \#\{y \in S(d_i) \text{ such that } y \ge x_i\}) \mod N$ output  $x_N$ 

Bob asks you to verify his computation. For that he gives you the numbers he used during its computation (the  $d_0, \ldots, d_{N-1}$ ) as well as the log of which figurines he added or removed every day. Note that a mini figurine added on day *i* and removed on day *j* is present on a day *k* when  $i \le k < j$ . You should tell him the number that you found at the end of the computation.

#### Input

The input is composed of 2N + 1 lines.

- The first line contains the integer *N*.
- Lines 2 to N + 1 describe the figurines added and removed. Line i + 1 contains space-separated +j or -j, with  $0 \le j < N$ , to indicate that j is added or removed on day i. This line may be empty. A line may contain both +j and -j, in that order.
- Lines N + 2 to 2N + 1 describe the sequence  $d_0, \ldots, d_{N-1}$ . Line N + 2 + i contains the integer  $d_i$  with  $0 \le d_i \le N$ .

### Output

The output should contain a single line with a single integer which is  $x_N$ .

### Limits

•  $1 \leqslant N \leqslant 100\,000$ 

# Sample Input

3 +0 +2 -0 +1 -1 -2 1 2 2

# Sample Output

2

# **Sample Explanation**

The output is 2 since

- first,  $x \leftarrow 2$  since  $S(1) = \{0, 2\}$  and  $\#\{y \in S(1) \text{ such that } y \ge 0\} = 2;$
- then,  $x \leftarrow 0$  since  $S(2) = \{1, 2\}$  and  $\#\{y \in S(2) \text{ such that } y \ge 2\} = 1$ ;
- and finally,  $x \leftarrow 2$  since  $S(2) = \{1, 2\}$  and  $\#\{y \in S(2) \text{ such that } y \ge 0\} = 2$ .