Problem C. Bubbles

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

One popular method of controlling the spread of disease are Bubbles. Each person chooses a bubble of other people to associate with and avoids contact with others. Infection in one bubble should not spread to people in other bubbles.
The concept fails, however, when a person belongs to multiple bubbles. For example, a person might have a personal bubble of family and friends and a work bubble of colleagues. In this problem, we will make the following simplifying assumptions:

- Each personal bubble contains the same number of people, P.
- Each work bubble contains the same number of people, W.
- Each person is in exactly one personal bubble and one work bubble.
- Each pair of personal bubble and work bubble has exactly one person in common.

Given a list of the bubbles that have been infected, determine how many people have been infected.

Input

First line: three integers P, W, N, the number of people in each personal and work bubble and the number of infected bubbles. These numbers satisfy the constraints $1 \leq P, W \leq 200,000$ and $0 \leq N \leq \min (P+W, 10000)$. Next N lines: the letter P or W , a space, and an integer B, indicating that personal or work bubble number B is infected. When the letter is P, B satisfies the constraint $0 \leq B<W$. When the letter is W, B satisfies the constraint $0 \leq B<P$. Each infected bubble is listed only once.

Output

A single integer I, the total number of people infected.

Example

	standard input	standard output	
2	3	2	4
W	1		
P	1		

