Problem E. Blackboard

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 mebibytes
At the math lesson teacher explained several regular ways to fill matrix $N \times N$ with sequential integers from 1 to N^{2}. First, he draws the empty matrix $N \times N$ (at the figure below $N=3$).

Then he filled matrix with the sequential integers in four different ways, starting from leftmost upper cell:
(1)

1	2	3
6	5	4
7	8	9

(2)

1	6	7
2	5	8
3	4	9

(3)

1	2	3
8	9	4
7	6	5

(4)

1	8	7
2	9	6
3	4	5

Then he asked Vasya to fill the matrix $N \times N$ in similar ways. Vasya is too lazy to do it, so he asked you to write a program to do it.

Input

Input consists of two integers $N(1 \leq N \leq 100)$ and $a(1 \leq a \leq 4)$, where a defines the way to fill the matrix.

Output

Print N lines, each containing N space-separated integers - the resulting matrix.

Examples

standard input	standard output
31	1 2 3 6 5 4 7 8 9
32	$\begin{array}{lll} 1 & 6 & 7 \\ 2 & 5 & 8 \\ 3 & 4 & 9 \end{array}$
33	
34	$\begin{array}{lll} 1 & 8 & 7 \\ 2 & 9 & 6 \\ 3 & 4 & 5 \end{array}$

Note

Samples coincide with four matrices, presented by teacher.

