Problem B. Bitset Master

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
6 seconds
512 mebibytes

It's well known in China that $O\left(n^{2}\right)$ algorithms can pass in a problem with $n=10^{6}$ easily.
You are given a tree with n vertices and $n-1$ edges $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$. For each vertex u, there is a set S_{u}. Initially $S_{u}=\{u\}$.
There are two types of operations:

- "1 u ": output the number of sets $S_{v}(1 \leq v \leq n)$ that contain u.
- "2 p ": take the sets $S_{u_{p}}$ and $S_{v_{p}}$ and assign $S_{u_{p}} \cup S_{v_{p}}$ to both of them.

You need to perform m operations. Output the answer for each operation of the first kind.

Input

The first line contains two integers $n, m\left(2 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 6 \cdot 10^{5}\right)$.
Each of the following $n-1$ lines contains two integers u_{i}, v_{i} describing an edge of the tree $\left(1 \leq u_{i}, v_{i} \leq n\right)$.
Each of the following m lines contains two integers t, w describing an operation $(1 \leq t \leq 2,1 \leq w \leq n+1-t)$.

Output

For each operation of the first kind, output an integer on a separate line.

Example

	standard input	
5	11	5
1	2	2
1	3	3
1	4	4
1	5	5
2	4	
2	3	
2	2	
2	1	
1	1	
1	2	
1	3	
2	2	
2	3	
1	4	
1	5	

