

Problem C. Cyclic Distance

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

The trick from problem "Alien" is a great way to improve a naive O(nk) dynamic programming to $O(n \log n)$. More problems with this trick can make the contest better, like the two unsolved problems in 300iq Contest 2.

You are given a weighted tree with n vertices and n-1 edges. The *i*-th edge connects vertices u_i and v_i and has length l_i . Let dis(u, v) be the distance (sum of weights on simple path) between vertex u and vertex v in the tree.

Find k distinct vertices p_1, p_2, \ldots, p_k that maximize $\sum_{i=1}^k \operatorname{dis}(p_i, p_{i \mod k+1})$. Output the maximum sum.

Input

The first line contains an integer T $(1 \le T \le 10^5)$ indicating the number of test cases. For each test case: The first line contains two integers n, k $(2 \le n \le 2 \cdot 10^5, 2 \le k \le n)$.

Each of the following n-1 lines contains three integers $u_i, v_i, l_i \ (1 \le u_i, v_i \le n, 1 \le l_i \le 10^6)$.

It is guaranteed that $\sum n \leq 2 \cdot 10^5$.

Output

For each test case, output one line with one integer: the answer.

Example

standard input	standard output
1	44
5 3	
1 2 4	
1 3 1	
1 4 8	
4 5 9	