Problem F. Fast as Ryser

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

After reading the paper Counting Perfect Matchings as Fast as Ryser, you learned how to count the number of perfect matchings in a general graph in $O\left(2^{n} n^{2}\right)$. So you decided to write this problem to encourage people to read the paper and learn new technology.
You are given an undirected graph with n vertices and m edges, and also a constant c. We define the weight of an edge set S as follows:

- If there are two edges in set S sharing common vertices, the weight is 0 .
- Otherwise, the weight is $c^{|S|}$. Note that the weight of an empty set is 1 .

Compute the sum of the weight of all subsets of edges. The answer can be large, so output it modulo $10^{9}+7$.

Input

The first line contains three integers $n, m, c\left(1 \leq n \leq 36,0 \leq m \leq \frac{n(n-1)}{2}, 1 \leq c \leq 10^{9}+6\right)$.
Each line of the following m lines contains two integers $u, v(1 \leq u, v \leq n, u \neq v)$ indicating an undirected edge (u, v) in the graph. All edges are distinct.

Output

Output one integer: the answer.

Examples

	standard input	
6	10	100
1	3	
2	4	
3	4	
4	6	
1	2	
4	5	
2	3	
1	4	
3	5	
8	118184601	
6	7	
3	6	
6	5	
7	3	
6	2	
8	1	
1	7	
4	3	
5	1	
6	1	
6	4	

