GCD-sum

task: gcds	input file: stdin	output file: stdout
points: 100	time limit: 2000 ms	memory limit: 1 GB

Task

A multi-set (i.e. a set with possible repetitions) of n integers is given. We split the set into k disjoint groups, for every group we compute the greatest common divisor of its elements, and sum all the subsets' GCDs.

For every $k=1,2, \ldots, n$, determine the maximal sum which can be obtained this way.

Input

In the first line of input there is a single integer $n(1 \leq n \leq 500000)$ - the cardinality of the set. In the second line, there are n positive integers, not exceeding 10^{12} - the given sequence.

Output

Output n line scontaining one integer each - the best sum of GCDs when partitioning into $1,2, \ldots, n$ subsets.

Subtasks

Subtask	Constraints	Points
1	$n \leq 7$	5
2	$n \leq 15$	5
3	$n \leq 100, a_{i} \leq 500$	8
4	$n \leq 2000, a_{i} \leq 2000, a_{i}$ are distinct	8
5	$n \leq 2000$	14
6	a_{i} are distinct	25
7	no additional constraints	35

Samples

input				output
4			1 10 9 3	1 13 23 32

For $k=2$, the best partition is $(10,10)$ and $(9,3)$, giving the sum of $10+3=13$. For $k=3$, the best partition is $(10),(10)$ and $(9,3)$ with the sum of 23 .

