Problem B. Balanced Illumination

Time limit:	1 second
Memory limit:	512 megabytes

Saint Bitsburg government is preparing a technical requirement for New Year city decoration.

The governor thinks that there should be a garland of n lights on the main square. The lights will turn on and off and entertain the residents of Saint Bitsburg.

The chief designer decided that the garland would change its appearance each second. Every light in the garland can be in two states: on and off. Each second exactly one light will change its state from on to off, or from off to on. Also the chief designer wants all combination of lights in the garland to repeat with a period 2^n seconds. During the period of 2^n seconds all 2^n possible lights combinations in the garland have to be presented.

The city's chief engineer, however, noted that frequently turning lights on and off would cause their malfunction. To minimize the chance of the lights malfunction it is required for every light to be turned on and off approximately the same number of times.

So, the final technical requirement for you – Chief Programmer of the Government Department of Information Technology – is here.

- You need to make a plan of 2^n combinations of lights $a_0, a_1, \ldots, a_{2^n-1}$, where a_k is a line of n zeros and ones, $a_k[i] = 1$ means, that the light i in the combination a_k is on, $a_k[i] = 0$ means, that the light i in the combination a_k is off.
- All combinations in the plan have to be distinct.
- This plan will be launched in a cycle, each second the next combination is presented on the garland, in the *t*-th second the combination $a_{t \mod 2^n}$ is presented.
- Adjacent combinations have to differ in exactly one light's state. Combination a_{2^n-1} and a_0 also have to differ in exactly one light's state.
- Let us denote by c_i the number of state changes of the light *i* during a complete cycle, including the final change from a_{2^n-1} to a_0 . Then for any $i \neq j$ values c_i and c_j have to differ by no more than 2.

Get to work!

Input

Input contains one integer $n \ (1 \le n \le 17)$.

Output

Output 2^n lines of n characters – sequence of combinations in the plan. It is guaranteed that a plan satisfying all requirements exists.

Examples

standard input	standard output
3	000
	010
	011
	111
	110
	100
	101
	001
4	0000
	0010
	1010
	1011
	0011
	0111
	0110
	0100
	0101
	0001
	1001
	1101
	1111
	1110
	1100
	1000

Note

In the first sample test $c_1 = c_2 = 2$, $c_3 = 4$. In the second sample test $c_1 = c_2 = c_3 = c_4 = 4$.