Problem C. How Many Strings Are Less

Time limit:	2 seconds
Memory limit:	512 megabytes

You are given a set D of n strings and a string s. You need to find the number of strings in the set D that are lexicographically less than s.

The given string s is modified q times. Each modification is defined by a pair of an integer k_{i} and a character c_{i}. Modification $\left(k_{i}, c_{i}\right)$ means that all characters of the string s, starting from k_{i} and up to the end of the string, are replaced by the character c_{i}.
For example, let the initial string s be "anatoly", then the queries ($5, \mathrm{o}$), ($3, \mathrm{~b}$), ($7, \mathrm{x}$) change the string as follows:

$$
\text { "anatoly" } \rightarrow \text { "anatooo" } \rightarrow \text { "anbbbbb" } \rightarrow \text { "anbbbbx" }
$$

After each modification of the string s, you need to output the number of strings of the set D that are lexicographically less than s.

Note

String a is lexicographically less than string b if $a \neq b$ and one of two conditions is satisfied:

- a is a prefix of the string b;
- for some i, the first i characters of the string a are equal to the corresponding characters of the string b, and $a_{i+1}<b_{i+1}$.

Input

The first line contains two integers n and q - the number of strings of the set D and the number of modifications $\left(1 \leq n, q \leq 10^{6}\right)$.
The second line contains a string s consisting of no more than 10^{6} lowercase Latin letters.
The following n lines contain the strings of the set D. Each string consists of lowercase Latin letters. The total length of the strings in D does not exceed 10^{6}.

The following q lines contain descriptions of modifications. The description consists of the integer k_{i} and the lowercase letter of the English alphabet c_{i}, separated by a space ($1 \leq k_{i} \leq|s|$).

Output

The first line of output must contain the number of strings of the set D that are lexicographically less than the initial string s.
Then output q lines. In the i-th line, print the answer after the i-th modification.

Examples

	standard input
4 3	standard output
anatoly	0
boris	0
anatooo	2
anbbbbu	3
anba	
5 o	
3 b	
7 x	3
5 5	3
abcde	3
buz	4
ababa	4
build	1
a	
aba	
1 b	
3 z	
2 u	
4 z a	

Note

In the first sample test, the string changes as follows:

$$
\text { "anatoly" } \rightarrow \text { "anatooo" } \rightarrow \text { "anbbbbb" } \rightarrow \text { "anbbbbx". }
$$

- Initial string "anatoly" is lexicographically less than all the strings of the set, so the answer to the problem is 0 .
- After the first modification, the string becomes "anatooo" and there is an equal string in the set, but the answer to the problem is still 0 , since it is not less than the current one.
- Then the string becomes "anbbbbb", which is lexicographically greater than "anatooo" and "anba", but less than "anbbbbu" and "boris", so the answer is 2 .
- After the last modification, the line will become "anbbbbx", which is lexicographically greater than "anatooo", "anba" and "anbbbbu", the answer is 3 .

