Twenty Second Russia Team Open, High School Programming Contest

Problem H. Lots of Parabolas

$\begin{array}{ll}\text { Time limit: } & 1 \text { second } \\ \text { Memory limit: } & 512 \text { megabytes }\end{array}$
On a plane there is a set of parabolas given by equations in the form $y=a \cdot x^{2}+b \cdot x+c$.
Let's consider a point to be located inside a parabola if it located above the parabola in case of positive coefficient a, or below the parabola in case of negative a.

On this figure, the point P is located inside both parabolas, the point Q is inside one of them, and the point R is inside none of them.
You need to find any point that is located inside all parabolas. It is guaranteed that such point exists.

Input

The first line contains a single integer $n(1 \leq n \leq 100000)$ - the number of parabolas.
Each of the next n lines contains three integers $a, b, c\left(|a|,|b|,|c| \leq 10^{9} ; a \neq 0\right)$, describing a parabola $y=a \cdot x^{2}+b \cdot x+c$.

Output

Print two real numbers x and y-coordinates of a point located inside all parabolas.
The answer is considered correct if there exists a point at distance at most 10^{-6} from the printed one, which is located strictly inside all parabolas.

Example

	standard input	standard output	
4		0.249999996325019324 .124999990812548	
1	2	3	
1	-3	-5	
-1	3	4	
-2	4	6	

