Problem A. Automorphism

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	512 mebibytes

You are given a rooted tree. Initially, it contains one vertex labeled as 1.

Your task is to process m operations of two types:

- Add a new vertex to the tree.
- Calculate the number of automorphisms of the subtree rooted at vertex u.

As the numbers can be very large, find them modulo 998 244 353.

For a rooted tree, whose root is r and vertex set is S, the automorphism is a bijection $f: S \to S$ such that f(r) = r and $\forall u, v \in S$, f(u) is the parent of f(v) if and only if u is the parent of v.

Input

The first line contains one integer $m \ (1 \le m \le 3 \cdot 10^5)$.

In the following m lines, each line indicates an operation. Each of these lines contains two integers t and $x \ (0 \le t \le 1)$.

If t = 0, add a new vertex labeled by the current maximum label plus 1. Add an edge between this new vertex and the vertex x.

If t = 1, calculate the number of automorphisms of the subtree of vertex x.

It is guaranteed that, for each operation, the value of x is between 1 and the current maximum label.

Output

For each calculate operation, print a single line with the number of automorphisms modulo 998 244 353.

Example

standard input	standard output
10	2
0 1	2
0 1	6
1 1	6
0 2	
0 3	
1 1	
0 3	
0 3	
1 3	
1 1	