Problem J. Jump Jump Jump

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

The rabbit starts at point (0,0) on the plane. The are k distinct vectors (dx_1, dy_1) , (dx_2, dy_2) , ..., (dx_k, dy_k) . On each step, the rabbit will choose one vector (dx_c, dy_c) randomly with the same probability, and then jump from its current point (x, y) to $(x + dx_c, y + dy_c)$. All choices are independent.

There are traps in all the lattice points (x, x) for all $x \ge 1$. Once the rabbit jumps into a trap, it gets trapped and can not move anymore.

For each x such that $1 \le x \le n$, output the probability that the rabbit gets trapped in the lattice point (x, x).

Input

The first line contains two integers n and k $(1 \le n \le 10^5, 1 \le k \le 16)$.

Each of the following k lines contains two integers dx_i and dy_i $(0 \le dx_i, dy_i \le 3)$ in each line. All the vectors are distinct.

Output

Print n lines. On line x, print the probability that the rabbit is trapped in the lattice point (x, x). It is guaranteed that the probability can be represented as a fraction A/B where B is coprime to 998 244 353, so output it as $A \cdot B^{-1} \mod 998 244 353$.

Example

standard input	standard output
5 3	499122177
0 0	873463809
0 1	935854081
1 0	959250433
	970948609

Note

The probabilities are $\frac{1}{2}, \frac{1}{8}, \frac{1}{16}, \frac{5}{128}, and \frac{7}{256}$.