Problem J. Jump Jump Jump

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
512 mebibytes

The rabbit starts at point $(0,0)$ on the plane. The are k distinct vectors $\left(d x_{1}, d y_{1}\right),\left(d x_{2}, d y_{2}\right), \ldots$, $\left(d x_{k}, d y_{k}\right)$. On each step, the rabbit will choose one vector ($d x_{c}, d y_{c}$) randomly with the same probability, and then jump from its current point (x, y) to $\left(x+d x_{c}, y+d y_{c}\right)$. All choices are independent.
There are traps in all the lattice points (x, x) for all $x \geq 1$. Once the rabbit jumps into a trap, it gets trapped and can not move anymore.
For each x such that $1 \leq x \leq n$, output the probability that the rabbit gets trapped in the lattice point (x, x).

Input

The first line contains two integers n and $k\left(1 \leq n \leq 10^{5}, 1 \leq k \leq 16\right)$.
Each of the following k lines contains two integers $d x_{i}$ and $d y_{i}\left(0 \leq d x_{i}, d y_{i} \leq 3\right)$ in each line. All the vectors are distinct.

Output

Print n lines. On line x, print the probability that the rabbit is trapped in the lattice point (x, x). It is guaranteed that the probability can be represented as a fraction A / B where B is coprime to 998244353 , so output it as $A \cdot B^{-1} \bmod 998244353$.

Example

	standard input	standard output	
5	3	499122177	
0	0	873463809	
0	1	935854081	
1	0	959250433	
		970948609	

Note

The probabilities are $\frac{1}{2}, \frac{1}{8}, \frac{1}{16}, \frac{5}{128}$, and $\frac{7}{256}$.

