Problem L. Link Cut Digraph

Input file: standard input
Output file: standard output
Time limit: $\quad 3$ seconds
Memory limit: $\quad 512$ mebibytes
After reading the paper Incremental Topological Ordering and Strong Component Maintenance, you came up with the following problem.
You are given a graph with n vertices. There are no edges initially. There are m operations. Each operation is first to add a given directed edge to the graph, and then to output the number of pairs (u, v) $(1 \leq u<v \leq n)$ such that u is reachable from v and v is reachable from u.
Can you implement the algorithm described in the paper in an ICPC contest?

Input

The first line contains two integers n and $m\left(1 \leq n \leq 10^{5}, 1 \leq m \leq 2.5 \cdot 10^{5}\right)$.
Each of the following m lines contains two integers u and $v(1 \leq u, v \leq n)$ indicating a newly added directed edge. Parallel edges and self-loops are allowed.

Output

Output m integers, one per line: the requested number of pairs after adding each given edge.

Example

	standard input		standard output
4	6	0	
1	2		0
2	3	1	
2	1	1	
3	4	2	
4	3	6	
3	2		

