Problem D. Drawing Colorful Rectangle

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

You are given a set of points on a plane. Each point is colored either red, blue, or green. A rectangle is called colorful if it contains one or more points of every color inside or on its edges. Your task is to find an axis-parallel colorful rectangle with the shortest perimeter. An axis-parallel line segment is considered as a degenerated rectangle and its perimeter is twice the length of the line segment.

Input

The first line contains an integer $n\left(3 \leq n \leq 10^{5}\right)$ representing the number of points on the plane. Each of the following n lines contains three integers x_{i}, y_{i}, and c_{i} satisfying $0 \leq x_{i} \leq 10^{8}, 0 \leq y_{i} \leq 10^{8}$, and $0 \leq c_{i} \leq 2$. Each line represents that there is a point of color c_{i} (0 : red, 1 : blue, 2: green) at coordinates $\left(x_{i}, y_{i}\right)$. It is guaranteed that there is at least one point of every color and no two points have the same coordinates.

Output

Output a single integer in a line which is the shortest perimeter of an axis-parallel colorful rectangle.

Examples

	standard input		
4		8	standard output
0	2	0	
1	0	0	
1	3	1	
2	4	2	
4		4	
0	0	0	
0	1	1	
0	2	2	
1	2	0	

