Problem E. Embedding the Polygon

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Given n integers - lengths of the segments. Your task is to embed the polygon with n vertices and with edges equal to those integers into the circle of the minimal radius (i.e. such as all the vertices are placed on the circumference).

Input

First line of the input contains one integer n that indicates the number of edges ($3 \leq n \leq 1000$). x_{k} $(k=1, \ldots, n)$ is an integer that indicates the length of the k-th edge ($1 \leq x_{k} \leq 6000$).
You may assume the existence of one or more polygons with the specified edge lengths. You can prove that one of such polygons has a circumscribed circle.

Output

Output the minimum radius of a circumscribed circle of a polygon with the specified edge lengths. Absolute/relative error of the output should be within 10^{-7}.

Examples

standard input	standard output
$\begin{array}{llllll} \hline 5 & & & & \\ 3 & 1 & 6 & 1 & 7 \end{array}$	3.54440435
$\begin{array}{llll} \hline 3 & & \\ 500 & 300 & 400 \end{array}$	250.0
```6 200030004000 2000 30004000```	3037.33679126
$\begin{array}{llllllllll} 10 & & & & & & & & \\ 602 & 67 & 67 & 67 & 67 & 67 & 67 & 67 & 67 & 67 \end{array}$	3003.13981697
$\begin{array}{\|lll\|} \hline 3 & & \\ 6000 & 6000 & 1 \end{array}$	3000.00001042

