Brackets

task: brackets	input file: stdin	output file: stdout
points: 100	time limit: 200 ms	memory limit: 1 GB

Task

A bracket symbol is one of the following: () []$\}<>$. A correct bracket expression is any string consisting of bracket symbols, such that:

- Every left bracket has a matching right bracket of the same kind, and every right bracket is matched;
- No two pairs of matching brackets cross - for every two such pairs, they are either disjoint or one is contained inside the other.

For example, ([])<> is a correct bracket expression, whereas $<\{>\}$ is not, as the curly brackets and angle brackets cross each other.

You are given a graph of n vertices in which every (directed) edge is labeled with one of the bracket symbols. A path in this graph is valid, if its edges form a correct bracket expression. For some two vertices s and t, determine the length of a shortest valid path between s and t. We allow the path to pass multiple times through any vertex.

Input

On the first line of input there are four integers n, $m, s, t(1 \leq n \leq 200,0 \leq m \leq 2000,1 \leq s, t \leq n)$ - the number of vertices, edges, starting and ending vertex, respectively. Each of the following m lines contains two integers x, y and a bracket symbol $b(1 \leq x, y \leq n)$, which describe one graph edge. Note that there may be loops and multiple edges.

Output

Output a single line containing a single integer - the length of the shortest valid path between s and t. If there is no such path, output -1 . You may assume that if a path exists, its length does not exceed 10^{18}.

Subtasks

Subtask	Points	Description
1	16	$n \leq 10, m \leq 50$
2	16	$n \leq 20, m \leq 100$
3	16	$n \leq 50$
4	16	$n \leq 100$
5	10	$s=1, t=n, a<b$ for every edge (a, b)
6	26	no additional constraints

Samples

input

| 4 | 4 | 1 |
| :--- | :--- | :--- | 4

input

5	4	1
5		
1	2	$<$
2	3	$\{$
3	4	$>$
4	5	$\}$

output
4 ,
-1 output
-1

