Problem C. Common Mistake

Input file:	stdin
Output file:	stdout
Time limit:	1 second

In the era of dreadroughts and battleships, people love to stack as many guns as possible onto warships to increase their fire power.
However, this is a common mistake. Adding too many guns will decrease maneuverability and mobility, and ends up decreasing the overall battle efficiency of the ships.
Given an array of N guns available, your are in charge of making the optimal selection so the battle efficiency of a ship is maximized.
You are given the following simplified model:
Each gun will have a weight w_{i} and power p_{i}.

Yamato with her $9 x 46 \mathrm{~cm}$ guns

The ship has K load ranges. While the total weight of all guns selected is in load range $\left[l_{i}, r_{i}\right]$, the battle efficiency of the ship is calculated as $m_{i} \sum_{j} p_{j}$ where m_{i} is the modifier associated with that load range, and j denotes the indices of all selected guns.
Note m_{i} will not necessarily decrease as l_{i} goes up, because having more guns will also bring crew members pride and increase their morale. This in turn will bring up the battle efficiency of the whole ship.

Input

The first line of input contains one integer $N(1 \leq N \leq 200)$, the number of guns available.
In the next N lines, each line will contain two nonnegative integers, $w_{i}, p_{i}\left(1 \leq w_{i}, p_{i} \leq 100\right)$.
The next line contains one integer $K(2 \leq K \leq 200)$, the number of load ranges.
In the next K lines, each line contains two numbers l_{i}, m_{i}, the first integer is the starting weight $l_{i}\left(0 \leq l_{i} \leq 20000\right)$ of this load range. The second number is a real number, the power modifier $m_{i}\left(0 \leq m_{i} \leq 10\right)$.
It is guaranteed the load ranges will be given in the increasing order of l_{i}, so l_{0} will always be 0 . All values of l_{i} are distinct. It is implied that $r_{i}=l_{i+1}-1$ and r_{K} does not matter (you can think of it as infinity).
It is also guaranteed the last load range will always have power modifier 0 , which can be considered as right past the maximum load capacity of this ship.

Output

A single line with an number giving the maximum battle efficiency of the ship. The floating number is rounded up to 3 digits after decimal points.

UIUC ICPC Spring Coding Contest 2018
University of Illinois at Urbana-Champaign, Saturday, April 7th, 2018

Examples

	stdin	
3		stdout
10	30	200.000
20	40	
20	40	
4		
0	1.0	
20	2.5	
50	1.8	
60	0	0.000
2		
100	100	
200	200	
2	2.5	
0	0	

