Programming Contest

Problem E

Dead-End Detector
Time limit: 5 seconds

The council of your home town has decided to improve road sign placement, especially for dead ends. They have given you a road map, and you must determine where to put up signs to mark the dead ends. They want you to use as few signs as possible.

The road map is a collection of locations connected by two-way streets. The following rule describes how to obtain a complete placement of dead-end signs. Consider a street S connecting a location x with another location. The x-entrance of S gets a dead-end sign if, after entering S from x, it is not possible to come back to x without making a U-turn. A U-turn is a $180-$

Source: Wikimedia Commons degree turn immediately reversing the direction.

To save costs, you have decided not to install redundant dead-end signs, as specified by the following rule. Consider a street S with a dead-end sign at its x-entrance and another street T with a dead-end sign at its y-entrance. If, after entering S from x, it is possible to go to y and enter T without making a U-turn, the dead-end sign at the y-entrance of T is redundant. See Figure E. 1 for examples.

(a) Sample Input 1

(b) Sample Input 2

Figure E.1: Illustration of sample inputs, indicating where non-redundant dead-end signs are placed.

Input

The first line of input contains two integers n and m, where $n\left(1 \leq n \leq 5 \cdot 10^{5}\right)$ is the number of locations and $m\left(0 \leq m \leq 5 \cdot 10^{5}\right)$ is the number of streets. Each of the following m lines contains two integers v and $w(1 \leq v<w \leq n)$ indicating that there is a two-way street connecting locations v and w. All location pairs in the input are distinct.

Output

On the first line, output k, the number of dead-end signs installed. On each of the next k lines, output two integers v and w marking that a dead-end sign should be installed at the v-entrance of a street connecting locations v and w. The lines describing dead-end signs must be sorted in ascending order of v-locations, breaking ties in ascending order of w-locations.

Sample Input 1

Sample Output 1

6	5	2
1	2	4
1	3	5
2	3	6
4	5	
5	6	

Sample Input 2

Sample Output 2

8	8	3
1	2	1
1	3	5
2	3	1
3	4	3
1	5	4
1	6	
6	7	
6	8	

