Problem B. Rectangle Tree

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	512 mebibytes

Mr. Peanutbutter has recently discovered a nice $n \times n$ field covered with various crops. Diane told Mr. Peanutbutter that for generations this particular field is planted with crops using tree-like rectangle method. While Mr. Peanutbutter got distracted by a bird, Diane continued.
A combinatorial rectangle in the field is a subset of squares of the field of the form $A \times B$ where A and B are subsets of the set $\{0, \ldots, n-1\}$.
A rectangle tree is a rooted binary tree with k vertices with the following properties. Each vertex v of the tree is labeled with a combinatorial rectangle $r(v) \subseteq\{0, \ldots, n-1\} \times\{0, \ldots, n-1\}$. If s is an inner node of the tree, and c_{1} and c_{2} are its direct descendants, then their combinatorial rectangles form a partition of $r(s)$: formally, $r(s)=r\left(c_{1}\right) \cup r\left(c_{2}\right)$ and $r\left(c_{1}\right) \cap r\left(c_{2}\right)=\varnothing$. A node cannot have only one direct descendant. Let $\operatorname{Crop}(x, y)$ be the crop that grows on the square $(x, y) \in\{0, \ldots, n-1\} \times\{0, \ldots, n-1\}$ of the field. A rectangle tree T with the root Root computes the crop types of the field if $r($ Root $)=\{0, \ldots, n-1\} \times\{0, \ldots, n-1\}$ and for each leaf ℓ, the combinatorial rectangle $r(\ell)$ has exactly one type of crop growing on it: that is, for any two $(x, y),\left(x^{\prime}, y^{\prime}\right) \in r(\ell)$, we have $\operatorname{Crop}(x, y)=\operatorname{Crop}\left(x^{\prime}, y^{\prime}\right)$.
The depth of tree T is the largest distance between the root of T and a leaf of T. Here, distance stands for the number of edges in the shortest path between the vertices.
The size of tree T is the number of vertices in it.
You are given a rectangle tree T computing crop types Crop. Let the size of T be S. Construct another rectangle tree T^{\prime} computing Crop such that its depth is at most $3 \log _{2} S$ and its size is at most $5 S$.

Input

The first line contains a single integer n, the size of the field ($1 \leq n \leq 1000$). Each of the next n lines contain n integers describing the types of the crops. The j-th integer in the i-th row is the type of crop in the square (i, j). All types are positive integers not exceeding 10^{7}.
The next line contains a single integer S, the size of the rectangle tree $\left(1 \leq S \leq 10000, S \cdot n \leq 10^{6}\right)$. The i-th of the next S lines contains the description of the i-th vertex of the tree. It contains several space-separated integers: $p, m_{1}, m_{2}, a_{1}, \ldots, a_{m_{1}}, b_{1}, \ldots, b_{m_{2}}$. Here, $p \in\{0,1, \ldots, S-1\}$ is the number of the parent of vertex i (if i is the root, then $p=i$), and the combinatorial rectangle corresponding to this vertex is $r(i)=\left\{a_{1}, \ldots, a_{m_{1}}\right\} \times\left\{b_{1}, \ldots, b_{m_{2}}\right\}$.
It is guaranteed that, if ℓ is a leaf of the tree, then all types of crops in $r(\ell)$ are the same. Additionally, for each inner vertex v with direct descendants c_{1} and c_{2}, the rectangles $r\left(c_{1}\right)$ and $r\left(c_{2}\right)$ form a partition of $r(v)$: $r(v)=r\left(c_{1}\right) \cup r\left(c_{2}\right)$ and $r\left(c_{1}\right) \cap r\left(c_{2}\right)=\varnothing$. Finally, if i is the root, then $r(i)=\{0, \ldots, n-1\} \times\{0, \ldots, n-1\}$.

Output

Print a tree of depth at most $3 \log _{2} S$ and of size at most $5 S$ such that it is also a rectangle tree that computes the given crops. The tree should be printed in the same format as the one given in the input.

Example

standard input	standard output
3	7
112	033012012
112	0132012
222	112201
5	11122
0330120012	02301012
03201201	421012
0310122	4220101
1220101	
112201	

