Problem C. Integer Cow

Input file:
Output file:
Time limit:
Memory limit:
standard input standard output
2 seconds
512 mebibytes

A cow stands on an infinite plane in integer point $\left(x_{0}, y_{0}\right)$. Grass grows in a disk centered in integer point $\left(x_{c}, y_{c}\right)$ with integer radius r, and also on the disk border.
The cow can perform the following command an arbitrary number of times: move from its current integer point $\left(x_{1}, y_{1}\right)$ to integer point $\left(x_{2}, y_{2}\right)$. The time to perform such command is equal to the Euclidean distance between the points. The two points may coincide.
Find a sequence of commands which will bring the cow to an integer point with grass in minimum possible time.

Input

The first line contains an integer t, the number of test cases ($1 \leq t \leq 100$). The next t lines contain test cases, one per line. Each test case is defined by five integers $x_{c}, y_{c}, r, x_{0}, y_{0}$: the coordinates of the grass disk's center, its radius, and the initial coordinates of the cow ($-10^{9} \leq x_{c}, y_{c}, x_{0}, y_{0} \leq 10^{9}, 1 \leq r \leq 10^{9}$).

Output

For each test case, print two lines. On the first one, print an integer k, the number of commands $(0 \leq k \leq 1000000)$. On the second line, print $2(k+1)$ integers, the cow's path: $x_{0} y_{0} \ldots x_{k} y_{k}$. If there are several optimal sequences, print any one of them.

Example

standard input	standard output
3	0
12112	12
	1
001100	$\begin{array}{lllll}-10 & 3 & -2 & 2\end{array}$
	3
	100505010

Explanation

The picture corresponds to the second fe,

