

Problem C. Integer Cow

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

A cow stands on an infinite plane in integer point (x_0, y_0) . Grass grows in a disk centered in integer point (x_c, y_c) with integer radius r, and also on the disk border.

The cow can perform the following command an arbitrary number of times: move from its current integer point (x_1, y_1) to integer point (x_2, y_2) . The time to perform such command is equal to the Euclidean distance between the points. The two points may coincide.

Find a sequence of commands which will bring the cow to an integer point with grass in minimum possible time.

Input

The first line contains an integer t, the number of test cases $(1 \le t \le 100)$. The next t lines contain test cases, one per line. Each test case is defined by five integers x_c , y_c , r, x_0 , y_0 : the coordinates of the grass disk's center, its radius, and the initial coordinates of the cow $(-10^9 \le x_c, y_c, x_0, y_0 \le 10^9, 1 \le r \le 10^9)$.

Output

For each test case, print two lines. On the first one, print an integer k, the number of commands $(0 \le k \le 1\,000\,000)$. On the second line, print 2(k+1) integers, the cow's path: $x_0 y_0 \ldots x_k y_k$. If there are several optimal sequences, print any one of them.

Example

standard input	standard output
3	0
1 2 1 1 2	1 2
3 2 5 -10 3	1
0 0 1 10 0	-10 3 -2 2
	3
	10 0 5 0 5 0 1 0

Explanation

