Problem B. Balanced Sequence

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 mebibytes
Chiaki has n strings $s_{1}, s_{2}, \ldots, s_{n}$ consisting of '(' and ')'. A string of this type is said to be balanced:

- if it is the empty string
- if A and B are balanced, $A B$ is balanced,
- if A is balanced, (A) is balanced.

Chiaki can reorder the strings and then concatenate them get a new string t. Let $f(t)$ be the length of the longest balanced subsequence (not necessary continuous) of t. Chiaki would like to know the maximum value of $f(t)$ for all possible t.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$ - the number of strings.
Each of the next n lines contains a string $s_{i}\left(1 \leq\left|s_{i}\right| \leq 10^{5}\right)$ consisting of '(' and ')'.
It is guaranteed that the sum of all $\left|s_{i}\right|$ does not exceeds 5×10^{6}.

Output

For each test case, output an integer denoting the answer.

Example

standard input	standard output
2	4
1	2
() (() (
2	
$)($	

