Problem C. Triangle Partition

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 mebibytes

Chiaki has $3 n$ points $p_{1}, p_{2}, \ldots, p_{3 n}$. It is guaranteed that no three points are collinear.
Chiaki would like to construct n disjoint triangles where each vertex comes from the $3 n$ points.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n(1 \leq n \leq 1000)$ - the number of triangle to construct.
Each of the next $3 n$ lines contains two integers x_{i} and $y_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$.
It is guaranteed that the sum of all n does not exceed 10^{4}.

Output

For each test case, output n lines contain three integers $a_{i}, b_{i}, c_{i}\left(1 \leq a_{i}, b_{i}, c_{i} \leq 3 n\right)$ each denoting the indices of points the i-th triangle use. If there are multiple solutions, you can output any of them.

Example

	standard input		standard output	
1		123		
1				
1	2			
2	3	5		

