Problem A. Max or Min

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Kevin has n integers $a_{1}, a_{2}, \ldots, a_{n}$ arranged in a circle. That is, the numbers a_{i} and $a_{i+1}(1 \leq i<n)$ are neighbors. The numbers a_{1} and a_{n} are neighbors as well. Therefore, each number has exactly two neighbors.

In one minute, Kevin can set a_{i} to the minimum among three numbers: a_{i} and it's two neighbors. Alternatively, Kevin can set a_{i} to the maximum among the same numbers. For example, if $a_{i}=5$ and a_{i} has two neighbors 3 and 2 , and Kevin performs the minimum operation, a_{i} will be equal to 2 . However, if he performs the maximum operation, a_{i} will remain 5 .

For each x from 1 to m, find the minimum number of minutes to make all numbers equal x, or determine that it is impossible to do so.

Input

The first line contains two integers n and $m\left(3 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 2 \cdot 10^{5}\right)$ - the number of integers in the circle, and the number of integers you need to find answers for.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq m\right)$ - the integers in the circle.

Output

Print m integers. The i-th integer should be equal to the minimum number of minutes that are needed to make all numbers equal i or -1 if it's impossible.

Example

standard input	standard output
75	$557-16$
2511232	

Note

To make all numbers equal 2 Kevin needs at least 5 minutes. One of the possible sequence of operations:

1. Apply min operation to a_{6}, it will be equal to 2 .
2. Apply max operation to a_{4}, it will be equal to 2 .
3. Apply max operation to a_{3}, it will be equal to 5 .
4. Apply min operation to a_{2}, it will be equal to 2 .
5. Apply min operation to a_{3}, it will be equal to 2 .
