

Problem G. Projection

Input file:	standard	input
Output file:	${\tt standard}$	output
Time limit:	1 second	
Memory limit:	512 megał	$_{ m oytes}$

Everybody knows that you are a TensorFlow fan. Therefore, you've been challenged to recreate the TensorFlow logo from two projections.

Consider that you have a 3D volume, $n \times m \times h$, and two projections (two matrices with dimensions $n \times m$ and $n \times h$ with elements 0 and 1). You are asked to compute a possible sets of cubes that must be placed inside the 3D volume such that the 3D object created with the cubes throws the shadows specified by the projection-matrices, when the light comes from left and front. If it is not possible, just print -1. If it is possible you must find exactly two sets, one with the **maximum** amount of cubes and one with the **minimum** amount. You can assume there is no gravitation (the cubes are located inside the 3D volume exactly where they are placed, without requiring any support). We assume that 1 represents shadow and 0 represents light.

If there are multiple such solutions, you must output the minimum lexicographic one. One solution A is lexicographically smaller than another solution b if the first number that differs between the two solutions is smaller in a than in b.

For example, solution [(0,0,0), (1,1,1)] is smaller than [(1,1,1), (0,0,0)].

Input

The first line contains three integers separated by a single space $n, m, h \ (1 \le n, m, h \le 100)$ — the volume dimensions.

Each of the next n lines contains m characters, each being either 1 or 0 representing either a shadow area (1) or a light area (0), describing the projection from the light in the front.

Each of the next n lines contains h characters, with the same format as above, describing the projection from the light on the left.

Output

The output should contain on the first line one number, either -1 if there is no solution or k_{max} representing the maximum number of cubes we can assign in the volume that will generate the two projections given in the input.

The next k_{max} lines should contain triplets of numbers x, y, z ($0 \le x < n, 0 \le y < m, 0 \le z < h$) representing the cubes chosen in the lexicographically smallest solution with maximum number of cubes.

Then, only if there is a solution, one more line follows containing k_{min} , the minimum number of cubes we can assign in the volume that will generate the two projections given in the input.

After that, the next k_{min} lines should contain triplets of numbers x, y, z ($0 \le x < n, 0 \le y < m, 0 \le z < h$) representing the cubes in the lexicographically smallest solution with minimum number of cubes.

Examples

standard input	standard output	
5 3 3	14	
111	0 0 0	
010	001	
010	0.0.2	
010		
010		
	0 1 2	
100	020	
110	021	
100	022	
100	1 1 0	
	2 1 0	
	2 1 1	
	3 1 0	
	4 1 0	
	410	
	8	
	0 0 0	
	0 1 1	
	022	
	1 1 0	
	2 1 0	
	2 1 1	
	310	
	4 1 0	
	+ 1 0	
2 2 2	-1	
00		
00		
11		
11		
232	6	
101	0 0 0	
011	020	
10	1 1 0	
11	111	
	120	
	1 2 1	
	020	
	1 1 0	
	121	

Note

A cube at coordinates (x, y, z) will generate a shadow at line x and column y in the $n \times m$ projection and line x and column z in the $n \times h$ projection (indexed from 0).