Problem I. Absolute Game

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Alice and Bob are playing a game. Alice has an array a of n integers, Bob has an array b of n integers. In each turn, a player removes one element of his array. Players take turns alternately. Alice goes first.

The game ends when both arrays contain exactly one element. Let x be the last element in Alice's array and y be the last element in Bob's array. Alice wants to maximize the absolute difference between x and y while Bob wants to minimize this value. Both players are playing optimally.

Find what will be the final value of the game.

Input

The first line contains a single integer $n(1 \leq n \leq 1000)$ - the number of values in each array.
The second line contains n space-separated integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$ - the numbers in Alice's array.

The third line contains n space-separated integers $b_{1}, b_{2}, \ldots, b_{n}\left(1 \leq b_{i} \leq 10^{9}\right)$ - the numbers in Bob's array.

Output

Print the absolute difference between x and y if both players are playing optimally.

Examples

	standard input		standard output	
4				4
2	14	7	14	
5	10	9	22	
1		28		
14				
42				

Note

In the first example, the $x=14$ and $y=10$. Therefore, the difference between these two values is 4 .
In the second example, the size of the arrays is already 1 . Therefore, $x=14$ and $y=42$.

