Problem J. Graph and Cycles

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

There is an undirected weighted complete graph of n vertices where n is odd.
Let's define a cycle-array of size k as an array of edges $\left[e_{1}, e_{2}, \ldots, e_{k}\right]$ that has the following properties:

- k is greater than 1 .
- For any i from 1 to k, an edge e_{i} has exactly one common vertex with edge e_{i-1} and exactly one common vertex with edge e_{i+1} and these vertices are distinct (consider $e_{0}=e_{k}, e_{k+1}=e_{1}$).

It is obvious that edges in a cycle-array form a cycle.
Let's define $f\left(e_{1}, e_{2}\right)$ as a function that takes edges e_{1} and e_{2} as parameters and returns the maximum between the weights of e_{1} and e_{2}.
Let's say that we have a cycle-array $C=\left[e_{1}, e_{2}, \ldots, e_{k}\right]$. Let's define the price of a cycle-array as the sum of $f\left(e_{i}, e_{i+1}\right)$ for all i from 1 to k (consider $e_{k+1}=e_{1}$).
Let's define a cycle-split of a graph as a set of non-intersecting cycle-arrays, such that the union of them contains all of the edges of the graph. Let's define the price of a cycle-split as the sum of prices of the arrays that belong to it.

There might be many possible cycle-splits of a graph. Given a graph, your task is to find the cycle-split with the minimum price and print the price of it.

Input

The first line contains one integer $n(3 \leq n \leq 999, n$ is odd $)$ - the number of nodes in the graph.
Each of the following $\frac{n \cdot(n-1)}{2}$ lines contain three space-separated integers u, v and w $\left(1 \leq u, v \leq n, u \neq v, 1 \leq w \leq 10^{9}\right)$, meaning that there is an edge between the nodes u and v that has weight w.

Output

Print one integer - the minimum possible price of a cycle-split of the graph.

Southeastern European Regional Programming Contest
Bucharest, Romania - Vinnytsya, Ukraine
October 19, 2019

Examples

		standard input	
3		3	
1	2	1	
2	3	1	
3	1	1	
5			
4	5	4	
1	3	4	
1	2	4	
3	2	3	
3	5	2	
1	4	3	
4	2	2	
1	5	4	
5	2	4	
3	4	2	

Note

Let's enumerate each edge in the same way as they appear in the input. I will use e_{i} to represent the edge that appears i-th in the input.

The only possible cycle-split in the first sample is $S=\left\{\left[e_{1}, e_{2}, e_{3}\right]\right\} . f\left(e_{1}, e_{2}\right)+f\left(e_{2}, e_{3}\right)+f\left(e_{3}, e_{1}\right)=1+1+1=3$.
The optimal cycle-split in the second sample is $S=\left\{\left[e_{3}, e_{8}, e_{9}\right],\left[e_{2}, e_{4}, e_{7}, e_{10}, e_{5}, e_{1}, e_{6}\right]\right\}$. The price of [e_{3}, e_{8}, e_{9}] is equal to 12 , the price of $\left[e_{2}, e_{4}, e_{7}, e_{10}, e_{5}, e_{1}, e_{6}\right]$ is equal to 23 , thus the price of the split is equal to 35 .

