Southeastern European Regional Programming Contest
Bucharest, Romania - Vinnytsya, Ukraine
October 20, 2018

Problem C

Tree

Input File: standard input Output File: standard output
 Time Limit: 0.1 seconds (C/C++) Memory Limit: 256 megabytes

You are given a tree of n vertices, each with a unique number from 1 to n. A vertex has a color, black or white Choose exactly m black vertices so that the length of the longest path between any of them is minimal.

Input
The first line contains two integers n and $m(1 \leq m \leq n \leq 100)$ - the number of vertices and the number of black vertices you have to choose.

The fourth line contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(0 \leq p_{i} \leq 1\right)$. If the $p_{i}=1$, then the i-th vertex is black; otherwise, it is white. It is guaranteed that the number of black vertices is at least m.

Each of the next $n-1$ lines contains two integers v_{i} and $u_{i}\left(1 \leq v_{i}, u_{i} \leq n\right)$ meaning that there is an edge between v_{i} and u_{i}.

It is guaranteed that the input graph is a tree.

Output

Print a single integer - the answer to the task.

Sample input	Sample output
$\begin{array}{lllllll} \hline 6 & 3 & & & & \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 2 & & & & \\ 1 & 3 & & & & \\ 1 & 4 & & & & \\ 3 & 5 & & & & \\ 3 & 6 & & & & \end{array}$	2
$\begin{array}{llllllllll} \hline 9 & 4 & & & & & & & \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 2 & & & & & & & \\ 2 & 4 & & & & & & & \\ 2 & 3 & & & & & & & \\ 4 & 5 & & & & & & & \\ 1 & 6 & & & & & & & \\ 6 & 7 & & & & & & & \\ 6 & 8 & & & & & & & \\ 7 & 9 & & & & & & & & \end{array}$	5

Note

In the first example, the only option is to choose 1,2 , and 4 . The maximum distance will be 2 .
In the second example, you can choose $1,3,8$, and 9 . The maximum distance will be between 3 and 9 .

