Southeastern European Regional Programming Contest
Bucharest, Romania - Vinnytsya, Ukraine
October 20, 2018

Problem E

Fishermen

Input File: standard input Output File: standard output
 Time Limit: 0.5 seconds (C/C++)
 Memory Limit: 256 megabytes

The ocean can be represented as the first quarter of the Cartesian plane. There are n fish in the ocean. Each fish has its own coordinates. There may be several fish at one point

There are also m fishermen. Each fisherman has its own x-coordinate. The y-coordinate of each fisherman is equal to 0 .

Each fisherman has a fishing rod of length l. Therefore, he can catch a fish at a distance less than or equal to l. The distance between a fisherman in position x and a fish in position (a, b) is $|a-x|+b$.

Find for each fisherman how many fish he can catch.
Input
The first line contains three integers n, m, and $l\left(1 \leq n, m \leq 2 \cdot 10^{5}, 1 \leq l \leq 10^{9}\right)$ - the number of fish, the number of fishermen, and the length of the fishing rod, respectively.

Each of the next n lines contains two integers x_{i} and $y_{i}\left(1 \leq x_{i}, y_{i}, \leq 10^{9}\right)$ - the fish coordinates.
Next line contains m integers $a_{i}\left(1 \leq a_{i} \leq 10^{9}\right)$ - the fishermen coordinates.

Output

For each fisherman, output the number of fish that he can catch, on a separate line.

	Sample input		
8	4	4	2
7	2	2	Sample output
3	3	3	
4	5	2	
5	1		
2	2		
1	4		
8	4		
9	4		
6	1	4	9

Note

The picture illustrates for the above example the area on which the third fisherman can catch fish.

