Problem E. Maximum Weighted Matching

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
256 mebibytes

Chiaki is good at generating special graphs. Initially, she has a graph with only two vertices connected by an edge. Each time, she can choose an edge (u, v), make a copy of it, insert some new vertices (maybe zero) in the edge (i.e. let the new vertices be $t_{1}, t_{2}, \ldots, t_{k}$, Chiaki would insert edges $\left(u, t_{1}\right),\left(t_{1}, t_{2}\right)$, $\ldots\left(t_{k-1}, t_{k}\right),\left(t_{k}, v\right)$ into the graph $)$.
Given a weighted graph generated by above operations, Chiaki would like to know the maximum weighted matching of the graph and the number different maximum weighted matchings modulo $\left(10^{9}+7\right)$).
A matching in a graph is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share a common vertex.
A maximum weighted matching is defined as a matching where the sum of the values of the edges in the matching have a maximal value.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(1 \leq n, m \leq 10^{5}\right)$ - the number of vertices and the number of edges.
Each of the next m lines contains three integers u_{i}, v_{i} and $w_{i}\left(1 \leq u_{i}, v_{i} \leq n, 1 \leq w_{i} \leq 10^{9}\right)$ - deonting an edge between u_{i} and v_{i} with weight w_{i}.
It is guaranteed that neither the sum of all n nor the sum of all m exceeds 10^{6}.

Output

For each test case, output two integers separated by a single space. The first one is the sum of weight and the second one is the number of different maximum weighted matchings modulo $\left(10^{9}+7\right)$.

Example

		standard input		standard output	
2			3	3	
6	7		2	2	
1	2	1			
2	3	1			
4	5	1			
5	6	1			
1	4	1			
2	5	1			
3	6	1			
4	5				
1	2	1			
1	3	1			
1	4	1			
2	3	1			
3	4	1			

