Southeastern European Regional Programming Contest

Problem I

Inversion

Input File: standard input Output File: standard output
 Time Limit: 0.1 seconds (C/C++)
 Memory Limit: 256 megabytes

A sequence $p_{1}, p_{2}, \ldots, p_{n}$ is called a permutation of n numbers $1,2, \ldots, n$ if any number in the range $[1, n]$ occurs exactly once in it. The pair (i, j) of integers in the range 1 to n is called an inversion if $i<j$ and $p_{i}>p_{j}$.

Let's call an inversion graph a graph which has exactly n vertices and there is and an edge between the pair (i, j) if and only if this pair is an inversion.

A set s of vertices of a graph is called independent if no two vertices from this set have an edge between them. A set t of vertices of a graph is called dominant if every vertice which does not belong to the set has an edge between at least one vertice which belongs to it. A set g of vertices of a graph is called independent-dominant if it is both dominant and independent.

You have an inversion graph of a particular permutation $1,2, \ldots n$ which is defined with pairs of vertices $\left(a_{i}, b_{i}\right)$ which have an edge between them. Find the number of independent-dominant sets of the graph.

It is guaranteed that the answer does not exceed 10^{18}.

Input

The first line contains two integers n and $m\left(1 \leq n \leq 100,0 \leq m \leq \frac{n \times(n-1)}{2}\right)$ - the number of vertices of the graph and the number of edges in the graph.

Each of the next m lines contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$, which means that there is an edge between u_{i} and v_{i}.

It is guaranteed that there exists a permutation that gives this graph.

Output

Print out the number of independent-dominant sets of vertices of the graph.
It is guaranteed that the answer does not exceed 10^{18}.

	Sample input	
4	2	2
2	3	Sample output
2	4	
5	7	3
2	5	
1	5	
3	5	
2	3	
4	1	
4	3	
4	2	
7	7	
5	6	
2	3	
6	7	
2	7	
3	1	
7	5	
7	4	5
5	6	
1	3	
4	5	
1	4	
2	3	
1	2	
1	5	

Note

The first sample is graph for permutation $[1,4,2,3]$. We can select two sets of nodes: $(1,3,4)$ or $(1,2)$.
The second sample is graph for permutation $[3,5,4,1,2]$. We can select three sets of nodes: $(1,2),(1,3),(4,5)$. The third sample is a graph for permutation $[2,4,1,5,7,6,3]$.
The fourth sample is a graph for permutation $[5,2,1,4,3]$.

