Problem F. Period Sequence

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	256 mebibytes

Chiaki has n integers $s_0, s_1, \ldots, s_{n-1}$. She has defined an infinite sequence S in the following way: $S_k = s_k \mod n + n \cdot \lfloor \frac{k}{n} \rfloor$, where k is a zero based index.

For a continuous subsequence S[l..r], let cnt_x be the number of occurrence of x in the subsequence S[l..r]. Then the value of S[l..r] is defined as follows

$$f(l,r) = \sum_x x \cdot cnt_x^2$$

For two integers a and b $(a \leq b)$, Chiaki would like to find the value of

$$(\sum_{a \le l \le r \le b} f(l,r)) \mod (10^9 + 7)$$

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains three integers n, a and b $(1 \le n \le 2000, 0 \le a \le b \le 10^{18})$.

The second line contains n integers $s_0, s_1, \ldots, s_{n-1}$ $(0 \le s_i \le 10^9)$.

It is guaranteed that the sum of all n does not exceed $2 \cdot 10^4$.

Output

For each test case, output an integer denoting the answer.

Example

standard input	standard output
4	179
3 2 6	268
2 1 3	369
527	437
2 1 5 1 2	
4 4 8	
2 1 5 17	
3 5 9	
252	