Problem F. Period Sequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
6 seconds
256 mebibytes

Chiaki has n integers $s_{0}, s_{1}, \ldots, s_{n-1}$. She has defined an infinite sequence S in the following way: $S_{k}=s_{k \bmod n}+n \cdot\left\lfloor\frac{k}{n}\right\rfloor$, where k is a zero based index.
For a continuous subsequence $S[l . . r]$, let $c n t_{x}$ be the number of occurrence of x in the subsequence $S[l . . r]$. Then the value of $S[l . . r]$ is defined as follows

$$
f(l, r)=\sum_{x} x \cdot c n t_{x}^{2}
$$

For two integers a and $b(a \leq b)$, Chiaki would like to find the value of

$$
\left(\sum_{a \leq l \leq r \leq b} f(l, r)\right) \bmod \left(10^{9}+7\right)
$$

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n, a and $b\left(1 \leq n \leq 2000,0 \leq a \leq b \leq 10^{18}\right)$.
The second line contains n integers $s_{0}, s_{1}, \ldots, s_{n-1}\left(0 \leq s_{i} \leq 10^{9}\right)$.
It is guaranteed that the sum of all n does not exceed $2 \cdot 10^{4}$.

Output

For each test case, output an integer denoting the answer.

Example

			standard input		standard output	
4				179		
3	2	6		268		
2	1	3			369	
5	2	7			437	
2	1	5	1	2		
4	4	8				
2	1	5	17			
3	5	9				
2	5	2				

