Problem H. RMQ Similar Sequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

Chiaki has a sequence $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $\mathbf{R M Q}(A, l, r)$ be the minimum $i(l \leq i \leq r)$ such that a_{i} is the maximum value in $a_{l}, a_{l+1}, \ldots, a_{r}$.
Two sequences A and B are called $R M Q$ Similar, if they have the same length n and for every $1 \leq l \leq r \leq n, \mathbf{R M Q}(A, l, r)=\mathbf{R M Q}(B, l, r)$.
For a given the sequence $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, define the weight of a sequence $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be $\sum_{i=1}^{n} b_{i}$ (i.e. the sum of all elements in B) if sequence B and sequence A are RMQ Similar, or 0 otherwise. If each element of B is a real number chosen independently and uniformly at random between 0 and 1 , find the expected weight of B.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 10^{6}\right)$ - the length of the sequence.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq n\right)$ denoting the sequence.
It is guaranteed that the sum of all n does not exceed 3×10^{6}.

Output

For each test case, output the answer as a value of a rational number modulo $10^{9}+7$.
Formally, it is guaranteed that under given constraints the probability is always a rational number $\frac{p}{q}$ (p and q are integer and coprime, q is positive), such that q is not divisible by $10^{9}+7$. Output such integer a between 0 and $10^{9}+6$ that $p-a q$ is divisible by $10^{9}+7$.

Example

standard input	standard output
3	250000002
3	500000004
123	125000001
3	
121	
5	
12321	

