Problem F. Dense Subgraph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
512 mebibytes

You have a tree on n vertices. Each vertex v has weight a_{v}, and its degree is at most 5 .
The density of a subset S of vertices is the value

$$
\frac{\sum_{v \in S} a_{v}}{|S|}
$$

Consider a subset L of the tree vertices. The beauty of L is the maximum density of S such that it is a subset of L, contains at least two vertices and forms a connected induced subgraph, or 0 if no such S exists.
There are 2^{n} ways to choose L. How many such L have their beauty no larger than x ? As the answer can be very large, find it modulo 1000000007 .

Input

The input contains several test cases, and the first line contains a single integer $T(1 \leq T \leq 30)$: the number of test cases.

The first line of each test case contains two integers $n(2 \leq n \leq 35000)$ and $x(0 \leq x \leq 35000)$: the number of vertices and the constraint on the beauty.
The next line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 35000\right)$: the weights of the tree vertices.
Each of the next $n-1$ lines contains two integers u and $v(1 \leq u, v \leq n)$, describing an edge connecting vertices u and v in the tree.
It is guaranteed that the given graph is a tree. It is also guaranteed that each vertex has degree at most 5 .

Output

For each test case, output a line containing a single integer: the number of ways to choose such a subset L of tree vertices that the beauty of L is no larger than x, modulo 1000000007 .

Example

				standard input		standard output
2					13	
5	0				6	
1	1	1	1	1		
1	2					
2	3					
3	4					
4	5					
3	2					
2	1	3				
1	2					
1	3					

