

Problem F. Dense Subgraph

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

You have a tree on n vertices. Each vertex v has weight a_v , and its degree is at most 5.

The **density** of a subset S of vertices is the value

 $\frac{\sum_{v \in S} a_v}{|S|}.$

Consider a subset L of the tree vertices. The **beauty** of L is the maximum **density** of S such that it is a subset of L, contains at least two vertices and forms a connected induced subgraph, or 0 if no such S exists.

There are 2^n ways to choose L. How many such L have their **beauty** no larger than x? As the answer can be very large, find it modulo 1 000 000 007.

Input

The input contains several test cases, and the first line contains a single integer T $(1 \le T \le 30)$: the number of test cases.

The first line of each test case contains two integers $n \ (2 \le n \le 35\,000)$ and $x \ (0 \le x \le 35\,000)$: the number of vertices and the constraint on the beauty.

The next line contains n integers a_1, a_2, \ldots, a_n $(0 \le a_i \le 35\,000)$: the weights of the tree vertices.

Each of the next n-1 lines contains two integers u and v $(1 \le u, v \le n)$, describing an edge connecting vertices u and v in the tree.

It is guaranteed that the given graph is a tree. It is also guaranteed that each vertex has degree at most 5.

Output

For each test case, output a line containing a single integer: the number of ways to choose such a subset L of tree vertices that the **beauty** of L is no larger than x, modulo $1\,000\,000\,007$.

Example

standard input	standard output
2	13
5 0	6
1 1 1 1 1	
1 2	
2 3	
3 4	
4 5	
3 2	
2 1 3	
1 2	
1 3	
1	1