Problem G. Closest Pair of Segments

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
12 seconds
512 mebibytes

The closest pair of points problem is a well-known problem in computational geometry. In this problem, you are given n points on the Euclidean plane, and you need to find a pair of points with the smallest distance between them.
Now, Claris, the brilliant one who has participated in programming contests for several years, is trying to solve a harder problem named the closest pair of segments problem, which also has a quite simple description as above.

However, the problem seems too hard, even for Claris, and she is asking you for help.
Now n segments are lying on the Euclidean plane. You have to pick two different segments, and then pick a point on each of them. Do it in such a way that the distance between these two points is the minimum possible.
For simplicity, no two given segments share a common point. Also, you don't need to show her the two points: just find the minimum possible distance between them instead.

Input

The input contains several test cases, and the first line contains a single integer $T(1 \leq T \leq 100)$: the number of test cases.
For each test case, the first line contains one integer $n(2 \leq n \leq 100000)$, which is the number of segments on the Euclidean plane.
The following n lines describe all the segments lying on the Euclidean plane. The i-th of these lines contains four integers, x_{1}, y_{1}, x_{2}, and y_{2}, describing a segment that connects $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, where $-10^{9} \leq x_{1}, y_{1}, x_{2}, y_{2} \leq 10^{9}$.
It is guaranteed that, in each test case, the two endpoints of each segment do not coincide, and no two segments share a common point. It is also guaranteed that the sum of n in all test cases does not exceed 100000.

Output

For each test case, output a line containing a single real number: the answer to the closest pair of segments problem with an absolute or relative error of at most 10^{-6}.
Precisely speaking, assume that your answer is a and and the jury's answer is b. Your answer will be considered correct if and only if $\frac{|a-b|}{\max \{1,|b|\}} \leq 10^{-6}$.

Example

				standard input	standard output
2					0.707106781185
2				1.000000000001	
0	1	1	2		
1	1	2	0		
2					
0	1	1	2		
2	2	3	1		

