Problem K. Make Rounddog Happy

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Rounddog always has an array $a_{1}, a_{2}, \ldots, a_{n}$ in his right pocket, satisfying $1 \leq a_{i} \leq n$.
A subarray is a non-empty subsegment of the original array. Rounddog defines a good subarray as a subsegment $a_{l}, a_{l+1}, \ldots, a_{r}$ such that all elements in it are different and

$$
\max \left(a_{l}, a_{l+1}, \ldots, a_{r}\right)-(r-l+1) \leq k
$$

Rounddog is not happy today. As his best friend, you want to find all good subarrays of a to make him happy. For this problem, please calculate the total number of good subarrays of a.

Input

The input contains several test cases, and the first line contains a single integer $T(1 \leq T \leq 20)$, the number of test cases.

The first line of each test case contains two integers $n(1 \leq n \leq 300000)$ and $k(1 \leq k \leq 300000)$.
The second line contains n integers, the i-th of which is $a_{i}\left(1 \leq a_{i} \leq n\right)$.
It is guaranteed that the sum of n over all test cases never exceeds 1000000 .

Output

For each test case, print a single line with a single integer: the number of good subarrays in the given array.

Example

standard input	standard output
2	7
53	31
23225	
104	
15436210845	

