

Problem K. Make Rounddog Happy

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Rounddog always has an array a_1, a_2, \ldots, a_n in his right pocket, satisfying $1 \le a_i \le n$.

A subarray is a non-empty subsegment of the original array. Rounddog defines a good subarray as a subsegment $a_l, a_{l+1}, \ldots, a_r$ such that all elements in it are different and

 $\max(a_l, a_{l+1}, \dots, a_r) - (r - l + 1) \le k.$

Rounddog is not happy today. As his best friend, you want to find all good subarrays of a to make him happy. For this problem, please calculate the total number of good subarrays of a.

Input

The input contains several test cases, and the first line contains a single integer T ($1 \le T \le 20$), the number of test cases.

The first line of each test case contains two integers $n \ (1 \le n \le 300\,000)$ and $k \ (1 \le k \le 300\,000)$.

The second line contains n integers, the *i*-th of which is a_i $(1 \le a_i \le n)$.

It is guaranteed that the sum of n over all test cases never exceeds $1\,000\,000$.

Output

For each test case, print a single line with a single integer: the number of good subarrays in the given array.

Example

standard input	standard output
2	7
5 3	31
23225	
10 4	
1 5 4 3 6 2 10 8 4 5	