Problem D. Diophantine Equation

Input file:
Output file: standard output
Time limit: $\quad 1$ second
Memory limit: 64 megabytes
Bikarp has a square of a positive integer n^{2}. He wants to split it into a sum of two cubes of positive integers. In other words, Bikarp wants to solve the following Diophantine equation

$$
n^{2}=x^{3}+y^{3}
$$

in positive integers, where n is fixed.
Find a solution of this equation or determine that it doesn't exist.

Input

The first line contains integer T - the number of test samples ($1 \leq T \leq 3000$).
The i-th of the following T lines contains a single integer $n\left(1 \leq n \leq 10^{9}\right)$.

Output

Output T lines. The i-th of them should contain the answer for the i-th test sample: either "impossible", if n cannot be decomposed, or two positive integers x and y.
If some test sample has several solutions - output any of them.

Example

	standard input
4	impossible
1	
2	impossible
3	21
4	22

