Problem H. Hash Function

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
64 megabytes

A hash function h_{n} is given, which encrypts the number A, consisting of $2 n$ bits, as follows:
Let $A=\left(a_{2 n-1} a_{2 n-2} \cdots a_{1} a_{0}\right)_{2}$, that is, a_{i} is the i-th bit of the number A.
The number $B=\left(b_{2 n-1} b_{2 n-2} \cdots b_{1} b_{0}\right)_{2}$, also consisting of $2 n$ bits, is calculated as follows:

$$
\begin{gathered}
b_{i}=a_{i} \oplus a_{2 i+1}, \text { for } 0 \leq i<n, \\
b_{i}=a_{i} \oplus a_{4 n-2 i-2}, \text { for } n \leq i<2 n,
\end{gathered}
$$

where \oplus is bitwise exclusive OR (XOR). In other words,

$$
B=A \oplus\left(a_{0} a_{2} \cdots a_{2 n-4} a_{2 n-2} a_{2 n-1} a_{2 n-3} \cdots a_{3} a_{1}\right)_{2} .
$$

Next, the number $C=B \oplus \operatorname{RSH}(B)$ is calculated, also consisting of $2 n$ bits, where $\operatorname{RSH}(B)$ is a cyclic right shift by 1 bit. In other words,

$$
C=B \oplus\left(b_{0} b_{2 n-1} b_{2 n-2} \cdots b_{2} b_{1}\right)_{2} .
$$

Finally, the hash value is calculated as $h_{n}(A)=239 A+153 C \bmod \left(2^{2 n-1}-1\right)$.
For example, let $n=4$ and $A=00001101_{2}=13$.
Then, $B=00001101_{2} \oplus 11000010_{2}=11001111_{2}=207$.
Further, $C=11001111_{2} \oplus 11100111_{2}=00101000_{2}=40$.
Finally, $h_{4}(A)=239 \times 13+153 \times 40 \bmod \left(2^{7}-1\right)=9227 \bmod 127=83$.
Your goal is to invert this hash function, that is, for given n and H, find A such that $h_{n}(A)=H$.

Input

You are given two integers n and $H\left(2 \leq n \leq 16,0 \leq H<2^{2 n-1}-1\right)$.
It is guaranteed that for the input there exists $A\left(0 \leq A<2^{2 n}\right)$ such that $h_{n}(A)=H$.

Output

Print one integer $A\left(0 \leq A<2^{2 n}\right)$ such that $h_{n}(A)=H$.
If there are several such A - output any.

Example

standard input	standard output	
483	13	

