Problem I. Infection

Input file:
Output file:
standard input
Time limit:
standard output
1 second
Memory limit:
64 megabytes

An emergency happened in one secret organization. In the middle of the working day, one of the employees was hospitalized with symptoms of an extremely dangerous colonavirus infection. In this regard, the management of the organization wants to establish which employees can still be infected, but the symptoms of the disease have not yet shown themselves.

There are n employees in the organization, who can be numbered with integers from 1 to n. From the recordings of CCTV cameras, the organization's management established when which employees contacted each other. In addition, management took into account the following assumptions:

- At the beginning of the working day, exactly one of the employees was infected, and each of the initial states could happen with a probability of $1 / n$.
- If two employees come into contact with each other, and one of them is infected and the other is not, then a healthy employee becomes infected with a probability of $1 / 2$. If both employees are healthy, or both are infected, nothing happens.
- If an employee is infected, he cannot suddenly recover, that is, he remains infected until the end.
- It is known that the employee numbered k was eventually infected.

A chronological list of employees' contacts is given. Determine for each employee the probability of being infected according to the assumptions described above.

Input

The first line contains three integers n, k and m - the number of employees, the number of the infected employee and the number of contacts, respectively ($2 \leq n \leq 15,1 \leq k \leq n, 1 \leq m \leq 50$).
The i-th of the following m lines contains two integers x_{i} and y_{i} - indexes of employees who participated in the i-th contact ($1 \leq x_{i}, y_{i} \leq n, x_{i} \neq y_{i}$).
All contacts in the list are given in chronological order

Output

Print n lines. On the i-th line print the probability of infection of the i-th employee as an irreducible fraction a / b. See the example for a more precise understanding.

Examples

