Problem J. Jumping Path

Input file:
Output file:
Time limit:
standard input
standard output
Memory limit
2 seconds
64 megabytes

Popeye the Sailor loves to eat spinach. He also loves to smoke his corn-made pipe. And which he constantly smokes.

Popeye lives in the Sweethaven village. On the main street of Sweethaven, which can be represented as a straight line, there are n public places, which can be considered as points on a straight line located at coordinates $x_{1}, x_{2}, \cdots, x_{n}$, respectively.

Popeye needs to get from the A point on the main street to the B point. Everything would have been simple, if not for the law that passed Sweethaven's authority: now smoking nearer than r from a public place is prohibited. Fortunately, Popeye has a pole length $R \geq r$, with which he can jump over forbidden zones.

Popeye is initially located at point A. He can move from x to y on foot in $|x-y|$ time. Also, at any time, he can use the pole and move from point x to point $x+2 R$ or $x-2 R$, moving along a semicircle of radius R, while he spends πR time. At the end of the path, Popeye must be at point B, and at no point on the trajectory of Popeye can be closer than r to any public place.
Determine the shortest time it takes Popeye to get from A to B. Or determine that it is impossible to get from A to B under the given constraints, so Popeye will have to use the power of spinach.

Input

The first line contains five integers n, r, R, A and $B\left(1 \leq n \leq 500,1 \leq r \leq R \leq 10^{6},-10^{9} \leq A, B \leq 10^{9}\right)$. The second line contains n integers $x_{1}, x_{2}, \cdots, x_{n}\left(-10^{9} \leq x_{i} \leq 10^{9}, 1 \leq i \leq n\right)$. All x_{i} are pairwise distinct. It is guaranteed that the points A and B are different and are not located in any of the forbidden zones.

Output

Print one real number - the smallest time. The answer will be counted if it differs from the jury's answer by no more than 10^{-6} in absolute or relative value. If it is impossible to get from A to B, print -1 .

Example

| standard input | | | standard output |
| :--- | :--- | :--- | :--- | :--- |
| 5 2 5 9 55.1238898038
 13 0 17 7 18 | | | |

Note

For an example from the statement, one of the optimal trajectories of movement looks as follows:

Elapsed time - $8+15 \pi$.

