Problem J
 Puzzle Game

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

For a string S, define $\operatorname{Adjacency}(S)$ to be the multiset of unordered pairs $(S[i], S[i+1]), i=$ $1,2, \ldots,|S|-1$, and define $\Sigma(S)$ to be the multiset of $S[i], i=1,2, \ldots,|S|$, where $|S|$ is the length of S and $S[i]$ is the i th character of S. For example, for $S=$ ABADDADCAB, we have Adjacency $(S)=\{\mathrm{AB}, \mathrm{BA}, \mathrm{AD}, \mathrm{DD}, \mathrm{DA}, \mathrm{AD}, \mathrm{DC}, \mathrm{CA}, \mathrm{AB}\}=\{\mathrm{AB}, \mathrm{AB}, \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AD}$, $\mathrm{AD}, \mathrm{CD}, \mathrm{DD}\}$ and $\Sigma(S)=\{\mathrm{A}, \mathrm{A}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{D}, \mathrm{D}\}$.

John is playing a puzzle game, in which two strings P and $Q,|P|>|Q|$, over the character set $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ are given and the goal is to insert characters into Q to obtain a string Q^{\prime} such that $\Sigma\left(Q^{\prime}\right)=\Sigma(P)$ and Adjacency $\left(Q^{\prime}\right)=\operatorname{Adjacency}(P)$. For example, given $P=\mathrm{ABADCAB}$ and $Q=\mathrm{CBB}$, by inserting A, $\mathrm{D}, \mathrm{A}, \mathrm{A}$ into Q, we can obtain a string $Q^{\prime}=\underline{\mathrm{ADCABAB}} \underline{\mathrm{AB}}$, in which inserted characters are underlined. It is easy to check that $\Sigma\left(Q^{\prime}\right)=\Sigma(P)=\{\mathrm{A}, \mathrm{A}, \mathrm{A}$, $\mathrm{B}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ and $\operatorname{Adjacency}\left(Q^{\prime}\right)=\operatorname{Adjacency}(P)=\{\mathrm{AB}, \mathrm{AB}, \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{CD}\}$. Thus, Q^{\prime} is a solution for $P=\mathrm{ABADCAB}$ and $Q=\mathrm{CBB}$. As another example, for $P=\mathrm{ABA}$ and $Q=$ CB , there is no solution.

Please write a program to help John. More specifically, given two strings P and Q, your program computes a string Q^{\prime} such that Q^{\prime} is obtained from Q by inserting some characters, $\Sigma\left(Q^{\prime}\right)=\Sigma(P)$, and $\operatorname{Adjacency}\left(Q^{\prime}\right)=\operatorname{Adjacency}(P)$.

Input Format

The first line of the input is an integer t, indicating that there are t test cases. Each test case consists of three lines: the first gives two integers, indicating the lengths $|P|$ and $|Q|$, the second gives the string P, and the third gives the string Q.

Output Format

For each case, output a solution string Q^{\prime}. If there are multiple solutions, you can output any of them. If there is no solution, output "NO".

Technical Specification

- The number of test cases is at most 15 .
- The length of $P,|P|$, is an integer between 2 and 10^{3}.
- The length of $Q,|Q|$, is an integer between 1 and 10^{3} and $|P|-18 \leq|Q| \leq|P|-1$.
- Both P and Q are over the character set $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$.

Sample Input 1

3
73
ABADCAB
CBB
117
ABACCDBADAC
AADCDAC
32
ABA
CB

Sample Output 1
ADCABAB
ABABDCCADAC
NO

