Problem E Imprecise Computer
 Time Limit: 1 Second

The Imprecise Computer (IC) is a computer with some structural issue that it can compare two integers correctly only when their difference is at least two. For example, IC can always correctly answer ' 4 is larger than 2 ', but it can answer either ' 2 is larger than 3 ' or ' 3 is larger than 2' (in this case, IC arbitrarily chooses one of them). For two integers x and y, we say ' x defeats y ' when IC answers ' x is larger than y '.

Given a positive integer n, let $P_{n}=\{1,2, \ldots, n\}$ be the set of positive integers from 1 to n. Then we run a double round-robin tournament on P_{n} using IC. The double-round-robin tournament is defined as follows:

1. The tournament is composed of two rounds (the $1^{\text {st }}$ round and the $2^{\text {nd }}$ round).
2. For each round, each element in P_{n} is compared to every other element in P_{n}.

Now for each element k in P_{n}, let $r_{i}(k)$ be the number of wins of k in the i-th round of the tournament. We also define the 'difference sequence' $D=d_{1} d_{2} \ldots d_{n}$ where for each $1 \leq k \leq n, d_{k}=\left|r_{1}(k)-r_{2}(k)\right|$.

The following shows an example when $n=5$.

$\mathbf{1}^{\text {st }}$ round	
2 defeats 1	3 defeats 1
3 defeats 1	4 defeats 1
4 defeats 1	5 defeats 1
5 defeats 1	1 defeats 2
3 defeats 2	4 defeats 2
4 defeats 2	5 defeats 2
5 defeats 2	2 defeats 3
5 defeats 3	4 defeats 3
3 defeats 4	5 defeats 3
4 defeats 5	5 defeats 4

In the example above, $r_{1}(1)=0, r_{1}(2)=1, r_{1}(3)=3, r_{1}(4)=3, r_{1}(5)=3$, and $r_{2}(1)=1, r_{2}(2)=1$, $r_{2}(3)=1, r_{2}(4)=3, r_{2}(5)=4$. Therefore, the difference sequence is $D=10201$ in this example.

Given a sequence of n nonnegative integers, write a program to decide whether the input sequence can be a difference sequence of P_{n}.

Input

Your program is to read from standard input. The input starts with a line containing an integer n, $3 \leq n \leq$ $1,000,000$), where n is the size of P_{n}. In the following line, a sequence of n integers between 0 and n is given, where each element in the sequence is separated by a single space.

Output

Your program is to write to standard output. Print exactly one line. Print YES if the sequence can be the difference sequence of P_{n}, and print NO otherwise.

The following shows sample input and output for two test cases.
Sample Input 1
Output for the Sample Input 1

5				
1	0	2	0	1

Sample Input 2

Output for the Sample Input 2
$\begin{array}{lllll}5 & & & \\ 1 & 1 & 2 & 1 & 0\end{array}$

