Problem L Two Buildings

Time Limit: 1 Second

There are n buildings along a horizontal street. The buildings are next to each other along the street, and the i-th building from left to right has width 1 and height h_{i}. Among the n buildings, we are to find two buildings, say the i-th building and j-th building with $i<j$, such that $\left(h_{i}+h_{j}\right) *(j-i)$ is maximized.

For example, the right figure shows 5 buildings, with heights $1,3,2,5$, 4 , from left to right. If we choose the first 2 buildings, then we get $(1+3) *(2-1)=4$. If we choose the first and fifth buildings, then we $(1+4) *(5-1)=20$. The maximum value is achieved by the second and fifth buildings with heights 3 and 4 , respectively: $(3+4) *$
 $(5-2)=21$.

Write a program that, given a sequence of building heights, prints $\max _{1 \leq i<j \leq n}\left(h_{i}+h_{j}\right) *(j-i)$.

Input

Your program is to read from standard input. The input starts with a line containing an integer $n(2 \leq n \leq$ $1,000,000$), where n is the number of buildings. The buildings are numbered 1 to n from left to right. The second line contains the heights of n buildings separated by a space such that the i-th number is the height h_{i} of the i-th building ($1 \leq h_{i} \leq 1,000,000$).

Output

Your program is to write to standard output. Print exactly one line. The line should contain $\max _{1 \leq i<j \leq n}\left(h_{i}+h_{j}\right) *(j-i)$.

The following shows sample input and output for two test cases.

Sample Input 1

Output for the Sample Input 1
21
$\begin{array}{lllll}1 & 3 & 2 & 5 & 4\end{array}$
Sample Input 2
Output for the Sample Input 2

5				3	
8	3	6	3	1	

