

Problem B. Build The Grid

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Given is a square grid of $N \times N$ squares. Your task is to paint each square of the grid either white or black such that:

- The white squares are connected: for any two white squares, you can go from one to the other by moving only between white squares that share a side.
- Each black square shares a side with at least one white square.
- Denote the number of black cells in the *i*-th row as p_i . The sequence $P = (p_1, p_2, \ldots, p_N)$ is then a permutation of integers between 0 and N 1, inclusive.
- Denote the number of black cells in the *j*-th column as q_j . The sequence $Q = (q_1, q_2, \ldots, q_N)$ is then a permutation of integers between 0 and N 1, inclusive.

It can be shown that such a construction always exists.

Input

The input consists of one integer N ($2 \le N \le 500$).

Output

Print N lines. On the *i*-th line, print a string of length N consisting of characters 'B' and 'W'. The *j*-th character in the *i*-th string corresponds to the square in *i*-th row and *j*-th column: 'B' denotes black squares and 'W' denotes white squares.

Example

standard input	standard output
3	WWB
	BWB
	WWW