Problem B. Build The Grid

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Given is a square grid of $N \times N$ squares. Your task is to paint each square of the grid either white or black such that:

- The white squares are connected: for any two white squares, you can go from one to the other by moving only between white squares that share a side.
- Each black square shares a side with at least one white square.
- Denote the number of black cells in the i-th row as p_{i}. The sequence $P=\left(p_{1}, p_{2}, \ldots, p_{N}\right)$ is then a permutation of integers between 0 and $N-1$, inclusive.
- Denote the number of black cells in the j-th column as q_{j}. The sequence $Q=\left(q_{1}, q_{2}, \ldots, q_{N}\right)$ is then a permutation of integers between 0 and $N-1$, inclusive.

It can be shown that such a construction always exists.

Input

The input consists of one integer $N(2 \leq N \leq 500)$.

Output

Print N lines. On the i-th line, print a string of length N consisting of characters ' B ' and ' W '. The j-th character in the i-th string corresponds to the square in i-th row and j-th column: ' B ' denotes black squares and ' W ' denotes white squares.

Example

standard input	standard output
3	WWB
	BWB
	WWW

