Problem D. Destructive Game

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

There are N stone piles, numbered by sequential integers from 1 to N. The i-th pile contains a_{i} stones. Additionally, each pile i has an integer b_{i} associated with it.
Alice and Bob play the following game using those stone piles.
They are alternately performing the following operation: choose pile i and a nonnegative integer k such that b_{i}^{k} is not greater than the current number of stones in pile i, and remove b_{i}^{k} stones from pile i. If a player cannot do that on their turn, the opposite player wins.
Alice moves first. Determine who will win if both players are playing optimally.

Input

The first line of input contains one integer $N\left(1 \leq N \leq 10^{5}\right)$, the number of piles. The i-th of the following N lines contains two integers a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq 10^{9}\right)$: the initial number of stones in the i-th pile and the integer associated with it, respectively.

Output

If Alice wins the game when both sides are playing optimally, print "Alice". Otherwise, print "Bob".

Examples

standard input	standard output
$\begin{aligned} & \hline 2 \\ & 10 \quad 3 \\ & 7 \quad 4 \end{aligned}$	Bob
$\begin{array}{ll} 16 & \\ 903 & 5 \\ 246 & 38 \\ 884 & 12 \\ 752 & 10 \\ 200 & 17 \\ 483 & 6 \\ 828 & 27 \\ 473 & 21 \\ 983 & 35 \\ 953 & 36 \\ 363 & 35 \\ 101 & 3 \\ 34 & 23 \\ 199 & 8 \\ 134 & 2 \\ 932 & 28 \end{array}$	Alice
$\begin{array}{ll} 16 & \\ 35 & 37 \\ 852 & 17 \\ 789 & 37 \\ 848 & 40 \\ 351 & 27 \\ 59 & 32 \\ 271 & 11 \\ 395 & 20 \\ 610 & 3 \\ 631 & 33 \\ 543 & 14 \\ 256 & 28 \\ 48 & 8 \\ 277 & 24 \\ 748 & 38 \\ 109 & 40 \end{array}$	Bob

