## Problem E. Edges, Colors and MST

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 mebibytes

There is an undirected simple connected graph $G$ with $N$ vertices and $M$ edges. The vertices of $G$ are numbered from 1 to $N$, and the edges are numbered from 1 to $M$. Edge $i$ connects vertices $u_{i}$ and $v_{i}$.
Given is a sequence $C=\left(c_{1}, c_{2}, \ldots, c_{M}\right)$ of length $M$, consisting of 0 s and 1 s . Edge $i$ is painted blue when $c_{i}=0$, and is painted red when $c_{i}=1$. The edges are colored in such a way that there are exactly $N-1$ red edges and they are forming a spanning tree of $G$.
Find the lexicographically smallest permutation $P=\left(p_{1}, p_{2}, \ldots, p_{M}\right)$ that satisfies the following condition: if, for each $i$, the weight of edge $i$ is $p_{i}$, then all the edges used in the minimal spanning tree of $G$ are red.
Note that the minimal spanning tree of $G$ is uniquely determined under those conditions.

## Input

The first line of input contains two integers $N$ and $M$ : the number of vertices and edges in graph $G$, respectively ( $2 \leq N \leq 2 \cdot 10^{5}, N-1 \leq M \leq 2 \cdot 10^{5}$ ).
The following $M$ lines contain descriptions of the edges. Each description contains three integers $a_{i}, b_{i}$ and $c_{i}\left(1 \leq a_{i}, b_{i} \leq N, 0 \leq c_{i} \leq 1\right)$ : the vertices that are connected by this edge and the color of the edge (red if $c_{i}=1$ and blue otherwise).
You may assume that there are no multiple edges nor loops, that the given graph is connected, and that the red edges are forming a spanning tree of the given graph.

## Output

Print $M$ integers that form the lexicographically smallest permutation $P$ that satisfies the following condition: if, for each $i$, the weight of edge $i$ is $p_{i}$, then all the edges used in the minimal spanning tree of $G$ are red.

## Example

| standard input | standard output |
| :---: | :---: |
| 45 | 31452 |
| 120 |  |
| 231 |  |
| 341 |  |
| 240 |  |
| 131 |  |

