

Problem G. Game with Balls and Boxes

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

There are N boxes and N balls. You are playing a game that goes as follows.

The boxes are enumerated by sequential integers from 1 to N, and the balls are also enumerated by sequential integers from 1 to N. The *i*-th box initially contains the ball P_i .

Each box is either open or closed. Initially, all boxes are closed.

Then two rounds of ball movement are performed. In each round, you:

- 1. Select zero or more boxes and open them. To open the box i for the first round, you pay A_i coins. To open the box i for the second round, you pay B_i coins.
- 2. Move the balls freely between the open boxes. However, each box must contain exactly one ball when the move is complete.
- 3. Close all open boxes.

After two rounds, for each i, the box i must contain the ball i. Find the minimal sum of coins you shall pay to complete the game.

Input

The first line of input contains one integer N $(1 \le N \le 10^5)$.

The second line contains N integers P_1, P_2, \ldots, P_N : here, P_i is the number of the ball that was initially placed in *i*-th box $(1 \le P_i \le N, P_i \ne P_j \text{ if } i \ne j)$.

The third line contains N integers A_1, A_2, \ldots, A_N : here, A_i is the price of opening the *i*-th box for the first round $(1 \le A_i \le 10^9)$.

The fourth line contains N integers B_1, B_2, \ldots, B_N : here, B_i is the price of opening the *i*-th box for the second round $(1 \le B_i \le 10^9)$.

Output

Print one integer: the minimal sum of coins you need to pay to have i-th ball in the i-th box for each i after two rounds.

Examples

standard input	standard output
5	28
5 3 2 1 4	
3 8 3 5 11	
93764	
1	0
1	
100000000	
100000000	