

Problem H. High Powers

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Given are integers s, t, and u.

Let a, b, and c be distinct complex numbers that satisfy the following conditions:

- a+b+c=s,
- ab + bc + ca = t,
- abc = u.

It is guaranteed that such a, b, and c exist for the given s, t, and u.

Given positive integers n and m, calculate the ratio

$$\frac{a^{n}(b^{m}-c^{m})+b^{n}(c^{m}-a^{m})+c^{n}(a^{m}-b^{m})}{(a-b)(b-c)(c-a)}$$

modulo 998 244 353.

Input

The first line of input contains two integers n and $m \ (1 \le n, m \le 10^{18})$.

The second line contains three integers s, t and u ($0 \le s, t, u < 998\,244\,353$).

It is guaranteed that the distinct complex numbers a, b, and c from the statement exist for the given s, t, and u.

Output

It can be shown that the answer can be represented as a rational number p/q where p and q are integers, (p,q) = 1, q > 0 and q is not divisible by 998 244 353.

Print the integer x such that $0 \le x < 998244353$ and qx - p is divisible by 998244353.

Examples

standard input	standard output
2 3	159
314 159 265	
1000000000000000 8000000000000000000000	76083766
6 11 6	
100000000000000000000000000000000000000	228155372
505459328 165146837 982639180	