Problem H. High Powers

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Given are integers s, t, and u.
Let a, b, and c be distinct complex numbers that satisfy the following conditions:

- $a+b+c=s$,
- $a b+b c+c a=t$,
- $a b c=u$.

It is guaranteed that such a, b, and c exist for the given s, t, and u.
Given positive integers n and m, calculate the ratio

$$
\frac{a^{n}\left(b^{m}-c^{m}\right)+b^{n}\left(c^{m}-a^{m}\right)+c^{n}\left(a^{m}-b^{m}\right)}{(a-b)(b-c)(c-a)}
$$

modulo 998244353.

Input

The first line of input contains two integers n and $m\left(1 \leq n, m \leq 10^{18}\right)$.
The second line contains three integers s, t and $u(0 \leq s, t, u<998244353)$.
It is guaranteed that the distinct complex numbers a, b, and c from the statement exist for the given s, t, and u.

Output

It can be shown that the answer can be represented as a rational number p / q where p and q are integers, $(p, q)=1, q>0$ and q is not divisible by 998244353 .
Print the integer x such that $0 \leq x<998244353$ and $q x-p$ is divisible by 998244353 .

Examples

standard input	standard output
$\begin{array}{lll} 23 & & \\ 314 & 159 & 265 \end{array}$	159
1000000000000000000800000000000000000 6116	76083766
1000000000000000000500000000000000000 505459328165146837982639180	228155372

